
Introduction to Coding Theory - Spring 2010 Solutions 1

Solutions 1

Exercise 1.1. See Examples 1.2 and 1.11 in the course notes.

Exercise 1.2. Observe that the Hamming distance of two vectors is the minimum number
of bit flips required to transform one into the other. Using this, the first three conditions are
trivial to verify. As for the triange inequality

d(x, z) ≤ d(x, y) + d(y, z), (1)

consider each position i of the vectors x, y and z. If xi = zi, the corresponding position
contributes 0 to the left-hand-side of equation (1). In this case, either yi = xi = zi, thus con-
tributing 0 to the right-hand-side as well, or yi 6= xi, zi, thus contributing 2 to the right-hand-
side. If xi 6= zi, so that the corresponding i contributes 1 to the left-hand-side of equation
(1), then yi must be different from at least one of xi and zi, thus contributing at least 1 to the
right-hand-side. Summing over all values of i we readily obtain the triangle inequality.

Exercise 1.3. This is very similar to the case of BSC(ε) considered in the courses notes. For a
received vector y ∈ Σn and any codeword z, we have

p(y|z) =
n∏
i=1

p(yi|zi).

From the definition of our channel, p(yi|zi) = ε/(q − 1) for yi 6= zi (this is the case for
d(y, z) coordinates) and p(yi|zi) = 1−ε for yi = zi (this is the case for n−d(y, z) coordinates).
Therefore

p(y|z) =
(

ε

q − 1

)d(y,z)
(1− ε)n−d(y,z) = (1− ε)n

(
ε/(q − 1)

1− ε

)d(y,z)
.

Since ε ≤ (q − 1)/q, the ratio ε/(q−1)
1−ε ≤ 1, so that the codeword z that maximizes p(y|z) is

the one that minimizes d(y, z).

Exercise 1.4.

1. Let A(n) := H
(

1
n , . . . ,

1
n

)
. We first show that

A(sm) = mA(s). (2)

To see this, note that A(sm) = H
(

1
sm , . . . ,

1
sm

)
corresponds to a choice between sm

equally likely events. We can group each s of these events together using Axiom 3. For
example, grouping the first s events gives us

A(sm) = H

(
1

sm−1
,

1
sm

, . . . ,
1
sm

)
+

1
sm−1

A(s).

Similarly grouping all the other events s by s, we obtain

A(sm) = A(sm−1) +A(s).
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We can now repeat this procedure recursively to obtain

A(sm) = A(sm−1) +A(s)
= A(sm−2) + 2A(s)
= · · ·
= mA(s).

Now for s and t integers, and for n arbitrarily large, we can always find m such that

sm ≤ tn < sm+1. (3)

On one hand, this gives us
m

n
≤ log t

log s
≤ m

n
+

1
n
. (4)

On the other hand, from Axiom 2, we know that A is a monotonic increasing function
of its argument, so that equation (3) gives us

A(sm) ≤ A(tn) < A(sm+1).

From equation (2), this is equivalent to saying that

mA(s) ≤ nA(t) < (m+ 1)A(s),

which gives us
m

n
≤ A(t)
A(s)

<
m

n
+

1
n
. (5)

As we let n grow to infinity, equations (4) and (5) gives us that

lim
n→∞

A(t)
A(s)

=
log t
log s

,

so that A(t) must be of the form

A(t) = K log t

for a constant K, where K must be positive to satisfy Axiom 2.

2. Suppose the pi are commensurable probabilities, so that pi = niP
ni

. Consider choos-
ing an event from

∑
ni equiprobable events. From the expression we derived above

for A(n), we know that the entropy of this choice is K log
∑
ni. But using Axiom 3,

we can also view this choice in the following equivalent manner: we can break down
a choice from

∑
nj equiprobable events into a choice from n events with probabil-

ities p1, . . . , pn, then if the ith event is chosen, we have a second choice between ni
equiprobable events. The entropy of this event is

H(p1, . . . , pn) +
∑

piK log ni.
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We thus obtain

H(p1, . . . , pn) = K
(

log
∑

ni −
∑

pi log ni
)

= K
(∑

pi log
∑

ni −
∑

pi log ni
)

= −K
∑

pi log
ni∑
ni

= −K
∑

pi log pi.

3. Now suppose the pi are incommensurable. Since the rationals are dense in the reals, we
can approximate the pi with rational numbers. We can thus find rationals p̃1, . . . , p̃n−1

such that |pi − p̃i| < ε for any ε > 0. Define p̃n as 1 −
∑n−1

i=1 p̃i. This ensures that
(p̃1, . . . , p̃n) is indeed a probability distribution, and |pn− p̃n| < (n−1)ε can be made as
small as we want. By continuity ofH (Axiom 1),H(p1, . . . , pn) tends toH(p̃1, . . . , p̃n) =
−K

∑
p̃i log p̃i. But by continuity of the function f(x1, . . . , xn) = −K

∑
xi log xi (de-

fined over real probability vectors (x1, . . . , xn)),−K
∑
p̃i log p̃i tends to−K

∑
pi log pi.

Thus the expression holds in general.

Exercise 1.5.

1. •

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

=
∑
x,y

p(x, y) log
p(x|y)
p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y)

= −
∑
x

p(x) log p(x) +
∑
x,y

p(x, y) log p(x|y)

= H(X)−H(X|Y ).

We prove similarly that

I(X;Y ) = H(Y )−H(Y |X).

•

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)
p(x)p(y)

= −
∑
x,y

p(x, y) log p(x)−
∑
x,y

p(x, y) log p(y) +
∑
x,y

p(x, y) log p(x|y)

= −
∑
x

p(x) log p(x)−
∑
y

p(y) log p(y) +
∑
x,y

p(x, y) log p(x|y)

= H(X) +H(Y )−H(X,Y ).

We can clearly see that I(X;Y ) is symmetric in its arguments.
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•

I(X;X) =
∑
x

p(x, x) log
p(x, x)
p(x)p(x)

=
∑
x

p(x) log
1

p(x)

= H(X).

We could also obtain this formula by noting that I(X;X) = H(X) − H(X|X) =
H(X).

2. Using the chain rule for two variables, we have

H(X1, X2) = H(X1) +H(X2|X1)
H(X1, X2, X3) = H(X1) +H(X2, X3|X1)

= H(X1) +H(X2|X1) +H(X3|X2, X1)
...

H(X1, . . . , Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|Xn−1, . . . , X1)

=
n∑
i=1

H(Xi|Xi−1, . . . , X1).

3. To prove the chain rule for relative entropy, note that

D(p(x, y)||q(x, y)) =
∑
x

∑
y

p(x, y) log
p(x, y)
q(x, y)

=
∑
x

∑
y

p(x, y) log
p(x)p(y|x)
q(x)q(y|x)

=
∑
x

∑
y

p(x, y) log
p(x)
q(x)

+
∑
x

∑
y

p(x, y) log
p(y|x)
q(y|x)

= D(p(x)||q(x)) +D(p(y|x)||q(y|x)).

Exercise 1.6.

1. Let χ be the support set of the random variable X and let A = {x : p(x) > 0} be the
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support set of the probability distribution p(x). We have

−D(p||q) = −
∑
x∈A

p(x) log
p(x)
q(x)

=
∑
x∈A

p(x) log
q(x)
p(x)

≤ log
∑
x∈A

p(x)
q(x)
p(x)

= log
∑
x∈A

q(x)

≤ log
∑
x∈χ

q(x)

= log 1 = 0,

with equality if and only if q(x)/p(x) = 1 everywhere, since log t is a strictly concave
function of t. Therefore

D(p||q) ≥ 0 (6)

with equality if and only if p(x) = q(x) for all x.

For any pair X,Y of random variables, I(X;Y ) = D(p(x, y)||p(x)p(y)). Equation (6)
gives us

I(X;Y ) ≥ 0, (7)

with equality if and only if p(x, y) = p(x)p(y) for all values x, y, that is, if and only if X
and Y are independent.

2. Let X take values over χ with some probability distribution p, and let u be the uniform
distribution over χ, so that u(x) = 1

|χ| for all x. Consider the quantity

D(p||u) =
∑
χ

p(x) log
p(x)
u(x)

=
∑
χ

p(x) log p(x)−
∑
χ

p(x) log u(x) = log |χ| −H(X).

From equation (6), we have that H(X) ≤ logχ|, with equality if p and u are the same
distribution.

3. From equation (7), we have

I(X;Y ) = H(X)−H(X|Y ) ≥ 0,

so that
H(X|Y ) ≤ H(X),

with equality if and only if I(X;Y ) = 0, i.e., if and only if X and Y are independent.
Thus conditioning reduces entropy.
In the previous exercise, we saw the chain rule for the entropy of n variables:

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|Xi−1, . . . , X1).
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Each conditional entropy term H(Xi|Xi−1, . . . , X1) is such that

H(Xi|Xi−1, . . . , X1) ≤ H(Xi),

with equality if and only if Xi is independent from the (i − 1)-tuple X1, . . . , Xi−1. We
finally get

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi),

with equality if and only if the Xi are independent.
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