Introduction to Coding Theory - Spring 2011 Exercise Sheet 8

Exercise Sheet 8

Exercise 8.1. Let C be a (generalized) [n, k, d] Reed-Solomon code over F; with parity check
matrix
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where the «; are distinct and nonzero.

1.

Suppose that a codeword ¢ = (c1,...,¢,) issentand y = (y1,...,yn) == c+ e is

received, where e = (ey, ..., e,) is the error vector of weight at most 7 := L%J . Define

the syndrome vector S = (So, S1,...,S4_2) := yH ', and show that the knowledge of S
(without knowing y) is sufficient to determine e.

For the rest of the exercise, we develop a syndrome decoding algorithm to determine the
error vector e from S. First, show that S = eH .

Suppose that the set of error positions (where y differs from ¢)is J C {1,...,n}. Show
that, for/ =0,...,d — 2,
Sy = Z ejag.
jeT

Define S(z) := Zg;g Sez’, and show that

S(z) = Z % mod 2%t

—~ 1 — ajx
jeJ

(Hint: what is the multiplicative inverse of 1 — ajz modulo z¢1?)

Define the error locator polynomial by

A(zx) = H(l — a;x)

Jj€J

[(z) := Zej H (1 — apme)

J€J  meJ\{j}

and also

(summations and products over an empty set are treated as 0 and 1, respectively).
Show that deg(I") < deg(A) < 7. Show that gcd(A(x),T'(z)) = 1.

(Hint: for the second part, it is enough to show that A(x) and I'(z) have no common
roots. Why?)

Show that A(z)S(z) = I'(x) mod z%~1.
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7. Suppose that there are polynomials A\(x) and () that satisfy
Mz)S(z) =~(z) mod zd71

and degree constraints deg(y) < 7 and deg(\) < 7. Show that A(z) | A(x).
(Hint: prove and use the fact that A () has a multiplicative inverse in the ring F,[z] /24~ 1).

8. Conclude that any nonzero solution to
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can be used to identify the error vector e.

Exercise 8.2. [Some properties of MDS codes] Let C' be an [n, k, d],-code. Let G and H be a
generator and a check matrix for C, respectively. Prove the following statements.

1. Cis MDS if and only if every n — k columns of H are linearly independent.

2. Cis MDS if and only if its dual C is MDS.

3. C'is MDS if and only if C' has a minimum weight codeword in any d coordinates.

Exercise 8.3. [Johnson Bound for MDS Codes] Consider encoding using a Reed-Solomon
code of length n and dimension k. Given a received vector y, construct a bipartite graph
with n left nodes L, one corresponding to each symbol of the y, and ¢ right nodes R, corre-
sponding to £ codewords of the RS code that agree with at least ¢ positions with the received
Y.

1. Connect with an edge i € L with j € Riff y; = (c;);, i.e., if the received vector agrees
with codeword c; at the ith coordinate. Show that the bipartite graph cannot have as
subgraph a complete bipartite graph Ky, » (i.e., a bipartite graph with k vertices on the
left and 2 vertices on the right).

2. Note that each codeword has at least ¢ coordinates that agree with y. Remove some
edges in the graph so that the right vertices have degree exactly t. Show that then
0t =%, u;, where u; is the degree of i € L.

3. Calculate the average number of common neighbors C' that two distinct codewords
have, in terms of [, ¢, and the u;.
(Hint: Let p; denote the probability that two distinct codewords picked uniformly at
random from R are both adjacent to i € L. Then start by writing C' in terms of the p;).

4. Observe that we can upper bound C' as C' < k — 1. Show that

, o nlt= (k= 1)

S _(h—1)n provided that t* > n(k — 1).

(Hint: from the Cauchy-Schwarz inequality it holds that >~ u? > (3" u;)?/n.)



