Network Information Flow with Correlated Data

João Barros
University of Porto

Joint work with Sergio D. Servetto, Cornell University
Motivation: Sensor Networks

- Data Collection
- Self-organization (adhoc network)
- Data Transmission
- Data Fusion and Post-Processing
- Decision
Research Challenges

- Theoretical limits of data communication in large-scale sensor networks.
- Efficient source and channel codes, modulators, detectors, estimation and data fusion algorithms.
- Networking aspects (topology, routing, flow control, communication protocols)
- Hardware (integrated circuits, low power, wireless radio/optical)
- Economics (applications, products, costs, markets).
Encoding Correlated Sources

Source 1

Source 2

Encoder

Decoder

Sink

\[R_1 > H(U_1|U_2) \]

\[R_2 > H(U_2|U_1) \]

\[R_1 + R_2 > H(U_2U_1) \]
A network flow interpretation...

A three-node graph with nodes 1 and 2 as the sources and node 0 as the sink.

João Barros

Network Information Flow with Correlated Data
Let \((G, V)\) be a directed graph in which each edge \(E_{ij}\) has capacity \(c(i,j) \geq 0\). Let \(s\) be the source and \(t\) be the destination.

A flow in \(G\) is a real-valued function satisfying the following constraints:

\[
\begin{align*}
\text{• Capacity constraint: } & \quad \text{For all } i \text{ and } j \text{ in } V, \quad f(i, j) \leq c_{ij} \\
\text{• Skew symmetry: } & \quad \text{For all } i \text{ and } j \text{ in } V, \quad f(i, j) = -f(j, i) \\
\text{• Flow conservation: } & \quad \text{For all } i \text{ in } V \setminus \{s, t\}, \quad \sum_{i \in V} f(i, j) = 0
\end{align*}
\]
The Slepian-Wolf Theorem gives necessary and sufficient conditions for feasible flows that guarantee perfect reconstruction at node 0.

\[R_{10} > H(U_1 | U_2) \]

\[R_{20} > H(U_2 | U_1) \]

\[R_{10} + R_{20} > H(U_1 U_2) \]
Many correlated sources

Perfect reconstruction is possible if and only if

\[\sum_{i \in S} R_{i0} > H(U(S) \mid U(S^c)) \]

for all sets \(S \subset \{1,2,\ldots,M\} \),

\[S \cap S^c = 0, \]

\[S \neq 0 \]
Theorem 1

Barros, Servetto 2002:

- Perfect reconstruction is possible if and only if

\[
\begin{align*}
H(U_1 | U_2) &< C_1 \\
H(U_2 | U_1) &< C_2 \\
H(U_1 U_2) &< C_1 + C_2
\end{align*}
\]
Sketch of Proof

- Begin with the converse and show that there do not exist codes outside the region of intersection.
- Exploit the properties of the following Markov chain:
 \[Y_1^N - X_1^N - U_1^N - U_2^N - X_2^N - Y_2^N \]
- Use Fano’s inequality to prove that the conditions of the theorem are necessary for arbitrarily small probability of error.
- Show that all points inside the intersection can be achieved using a cascade of Slepian Wolf codes and optimal point-to-point channel codes.
Multiple Sources and Channels

Perfect reconstruction is possible if and only if

\[H(U(S) | U(S^c)) < \sum_{i \in S} C_{i0} \]

for all sets \(S \subset \{1,2,\ldots,M\} \),

\[S \cap S^c = 0, \]

\[S \neq 0 \]
Cooperation between encoders occurs in \(K \) rounds and is specified by \(2K \) functions:

\[
\begin{align*}
 h_{1k} : U_1^N \times Y_{21}^N (1) \times \ldots \times Y_{21}^N (k - 1) & \rightarrow X_{12}^N (k) \\
 h_{2k} : U_2^N \times Y_{12}^N (1) \times \ldots \times Y_{12}^N (k - 1) & \rightarrow X_{2k}^N (k)
\end{align*}
\]
Each node observes one of the correlated sources.

After K rounds of communication node 0 must produce a perfect reconstruction of all sources.
Theorem 3

\[H(U_1|U_2U_0) < C_{10} + C_{12} \]
\[H(U_2|U_1U_0) < C_{20} + C_{21} \]
\[H(U_1U_2|U_0) < C_{10} + C_{20} \]

(converse proof !)

Cooperation increases the capacity region of the channels.
Networks of Independent Channels

The network is described by a directed graph.

Again, after K rounds of communication node 0 must produce a perfect reconstruction of all sources.

In each round the sent codewords depend on all previously received channel outputs.
Coding Strategy

- Use capacity-achieving channel codes to turn the noisy network into a noiseless network.

- Use network source codes for (1) distributed compression and (2) data delivering to the destination.
Use classical Slepian-Wolf codes at some operating point \((R_1, R_2 \ldots, R_M)\).

View this as a flow network and consider a flow \(f\) with \(M\) sources and demands \((R_1, R_2 \ldots, R_M)\) at node 0.

If \(f\) exists, then \(f\) determines the number of bits that each node must send to its neighbours.
Network Source Codes

- Perform random binning to send the required information to each neighbour at the rates specified by f.
- The decoder collects all the bin indices at node 0 and applies standard Slepian-Wolf decoding.
Final Result

- Slepian Wolf Theorem:
 \[\sum_{i \in S} R_i > H(U(S) \mid U(S^c)) \]

- Elementary flow concepts:
 a flow is feasible if
 \[\sum_{i \in S} R_i < \sum_{i \in S} \sum_{j \in S^c} C_{ij} \]
 i.e. the total amount of flow injected on one side of the cut has to be lower than the capacity of the links carrying that quantity of flow to the other side.

- Thus,
 \[H(U(S) \mid U(S^c)) < \sum_{i \in S} \sum_{j \in S^c} C_{ij} \]

- The converse is too ugly for this talk.
An Optimal Protocol Stack

Interface across layers

Transport Layer
- Data compression
- Rate control

Network Layer
- Routing
- Fault tolerance
- Rate allocation

MAC Layer
- Neighborhood discovery
- Power allocation
- independent channels

Physical Layer
- Exchange of waveforms with neighbors

Layers

Protocols

Protocols

Layers

Physical
Layer

MAC
Layer

Network
Layer

Transport
Layer

Protocols

Interface across layers

Packets
Local topology

Bits

Waveforms

EPFL
14-12-2004
Network Optimization

Is the rate polytope non-empty?
If yes, what is an optimal flow?
Linear Programming

- Linear cost model (e.g. energy per bit)

\[
\min \kappa(f) = \sum_{(v_i,v_j) \in E} w(v_i,v_j) \cdot f(v_i,v_j)
\]

subject to:

flow constraints

\[
f(i,j) \leq c_{ij} \quad 0 \leq i, j \leq M
\]

\[
f(i,j) = -f(j,i) \quad 0 \leq i, j \leq M
\]

\[
\sum_{i \in V} f(i,j) = 0 \quad 1 \leq i \leq M
\]

coding constraints

\[
H(U_S \mid U_{S^c}) \leq \sum_{i \in S} f(s,i) \leq \sum_{i \in S, j \in S^c} c_{ij}
\]

\[
f(s,i) = R_i \quad 1 \leq i \leq M
\]
Data Gathering Trees

This example is solvable…

…but not with trees!
This example is also solvable…

...but the cost of using a tree is huge!

Ratio $\Phi(1+\varepsilon)+1) / (\varepsilon \Phi+3)$
for large Φ, we get about $1+1/\varepsilon$, unbounded for small ε!
Conclusions

- Network information flow can become a very powerful and useful concept.

- No doubt, the validity and usefulness of the separation principle in networks is a question of *when* and *not if* it holds.

- When does information transported through a network behave like water in pipes?

- How do we do *information-theoretically optimal networking*?
Merci!