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Marginalization Problem

Given an arbitrary function of many variables, find (some of)
its ‘marginals’. For example

b (x) = E p(x;, -, x,)

or even yl(x1)=xma§ B(x,,+,x,)
g

e.g. B (...) could be the joint density on variables, then
P, (x,) = marginal probability of x,, and
¥; (x;) = probability of most likely conf. of rest of variables



Applications
|

e Error Correcting Codes
e Image Processing

e Computer Vision

e Networking

e Statistical Physics

Problem: Computations intractable. State space 1s exponential
in number of variables.



Product Functions and Factorization

Suppose f§ factorizes as product of functions of smaller subsets
of variables. e.g.

Markov chain model: ~ fB(x,,--,x,) = p(x, )H p(x. | x,_))

Then certain ‘conditional independencies’ may hold which can
simplify the marginalization task.

E.g. (xy,..., x;) 1s cond. indep. of (x,,,,..., x,) given x,_, hence

Y6 - 3 p<x0>ﬁp<xj|x,-_l>]( 3 ﬁp<x,-|xj_l>)

{X0 5%, P\ X {X0, X} Xipg Xy} J=i+2



Product Functions - Notation

Given

state vector: X = (xlr"a XN)

a collection of local domains, R: VrER, r C{l,---, N}

and local functions (kernels): a.(x), rER
Objective function factorizes: p(x) = H a (X,)
ER

Find marginals: B.(x,)= Z p(x)



Independency Graphs
]

A graph with nodes corresponding to domains rER, s.t.
separation on graph implies (conditional) independence.

A tree 1s called a ‘Junction Tree’ 1f whenever a node r,
separates nodes 7, and r, on tree, thenr, N, C 7,

=



Junction Tree Algorithm

(a.k.a. GDL, Belief Propagation, sum-product, ...)

® Define ‘messages’ u, ,(x,n,) for each edge (r, u) ot the

independency graph. Initialize to 1.

e Update messages as:

Mr,u ('xuﬂr) = Z ar(xr) u‘t,r ('xrﬂl‘)

tEN (r)\{u}

e Define ‘Beliefs’ b.(x )= (x.) w,,(xX,q)
tEN(r)



Junction Trees

If graph 1s junction tree, algorithm converges in finite time, and
then beliefs b, (x,) are the marginals of the product function.

Given regions, can ‘quickly’ determine 1f a junction tree exists.
Involves finding a maximal-weight spanning tree of regions.

If none exist, can always expand regions 1n a way to create a
junction tree, but complexity 1s exponential in the size of
regions.



Graphs With Cycles - Perspective
]

B.P. on graphs with loops 1s used as approximation to the

marginals, e.g. in Turbo codes and LDPC decoding.

Attempts at justification of approximation on loopy graphs:

One-loop case (Weiss, Horn et. al.)
Gaussian case (Van Roy, Weiss)
Fixed points and stability (Richardson)

LDPC studies (Gallager, McKay & Neal, Luby et. al.,
Urbanke & Richardson, Shokrollahi).

Tree-based Reparametrization (Wainwright)



Probability-theoretic View
]

Motivation:

e Relying on variables can conceal partial structure 1n state-
space; can only recognize/create ‘rectangular
decompositions.’

e Generalize the problem to arbitrary state-spaces; State-space
need not be represented by ‘variables.’



Example

Letx,,..., x,;, take value in (a finite semi-group) 4 and
let w(x,,..., x,) =f(x,+...+x,,), p{x,) be real functions.

We would like to calculate

M
E = E M(xla"'axM)Hpi(xi)



Example, cntd.

GDL Solution: Or

@ AT A

k= Epl()ﬁ)z pz(xz)'”z WXy, X ) Py (Xy)

Requires O(|4|Y) additions and multiplications.



Example, cntd.

In comparison, with S;=x+...+x,,E4

1s an independency tree, suggesting

K= Zf(Sl) py(x)- P (S Par (X4 1)

X1 +8,=5; Xyt =Sy

This requires only O(M|A4|?) additions and multiplications.



Probability-theoretic GDL
]

A systematic theory to recognize and exploit such
structures.

Reformulate the MPF problem as taking conditional
expectations 1n an arbitrary sample space.

GDL PGDL
Variables X,..., Xy Arbitrary representation
Local domains rER o-fields Fy..., Fy

Local functions o, , r&R Random variables X ,..., X,

Marginals 3,= Ex\xr ILlx Cond. Expectations E[H)(l| j[;]




Preliminaries - Notation

e A discrete state-space €2

e A measure u(.) on Q2
» o-fields J; on Q

» Andr.v.’s X. €

e Want to calculate:

M

B[ XD =15 f) HX(w>1<w>
i=1 wESf i=

for each (nonzero measure) atom f of ',



Preliminaries, cntd.

e Augmentation: F,, =5V

e Conditional Independence:
Say FlL G| H if
for each atom % of JH:

. If w(h) = 0 then

. Ifwh)=0then YfETF,g€qG, i(f,g,h)=0




Marginalization Problem and Junction Trees

Given a collection (2, {F,..., F,,}, u) of meas. spaces,
and r.v.’s X; €F:
MPF Problem: For one or more i€{1,...,M} find E[IL X} F]

A tree with nodes {1,..., M} 1s called a junction tree if:
VA BC{l,..,.M}and i€ {1,...,M} s.t.

i separates A and B on tree, we have F, || Ty | F,

As before, a junction tree captures the independencies



Probabilistic Junction Tree Algorithm

The following algorithm solves the MPF problem (c.f. GDL)

e Define ‘messages’ ¥, €F; for each edge (i, /) of the junction

tree. Initialize to 1.

e Update messages as:

Yi,j = E[Xi an |.Tj]
kEN(i

U}

e Define ‘Beliefs’
B, =X, Yk,i
KEN (i)

M
e Attermination B, = E[H X, |fz ]
j=



Existence of Junction Trees
]
Main results:
Given a collection (Q, {F,...,.F,,}, w) of meas. spaces:
» Vi=l,..., M, there exists a partition P; of {1,..., M}\{i}
(called Finest Valid Partition w.r.t. 7), and

e If a junction tree exists, then for each i =1,..., M there exists
a J.T. compatible with P;.

Example: Suppose M=7 and
P={{1} {3,6,7} {4,5}} then: @



Lifting
|
Let (€2, {F,,..., J1/}, w) be a collection of meas. spaces.
Another collection (Q', {'F,',..., F,/ }, w) 1s a lifting of
(Q, {F,..., Fyyt, wif thereisamap f: Q' — Q s.t.:

W' 1s consistent with u under £, and
o foralli=1,..., M, f i1s (}/, JJ. )-measurable.




Lifting to Create Conditional Independency

Given ‘f,, F, and J; we like to lift in a way so to have:

FALFF
Corresponds to certain matrices of joint measures being rank
one.

If some of these matrices are not rank-one, find a rank-one
decomposition.

= ‘lifting’ obtained by splitting the atom corresponding to the
matrix.



Algorithm to Create a Junction Tree

|
This algorithm will find a J.T. on {F,,..., F,,} if one exists:

e Pick any node i€{1,..., M} as the root,
e Find any valid partition w.r.t. i, say {c,,..., ¢;}
e Foreach j=1to/
+ Pick a node #Ec; and split atoms of T, s.t. F; Il Fe, | F,.

- Find a J.T. on ¢;, with 7 as the root. Attach this tree by
adding the edge (i,7).
e End



Example 2: Exact Decoding of LDPC Codes

H & GF(2)™"": Parity check matrix of an LDPC code with
m ‘checks’ and block size n

e Codewords satisty H x=0, with a posteriori probabilities
* 1 L 3k 7
P (x) = Enp(xi)P(yi | xi)nl(Hj 'x=0)
i1 7=l
e Objective: find marginals of P™:

P(x;) = ;P*(x)



Example 2, cntd.

e Exact naive GDL solution: triangulate the graph, and run
J.T. algorithm on the tree of cliques.

e Problem: graph highly connected, so cliques are large,
algorithm inefficient.

e PGDL solution:
state-space = the codebook; uniform measure;
random variables = P(x; = ])P(yl* | x, =)
original o-fields = directions of variables x;’s

=L1ft using the automatic Matlab algorithm to form a chain.



Results:
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Concluding Remarks

As with GDL, our algorithm generalizes to any ‘semi-field’
(e.g. max-product).

Cost of lifting 1s high, but a junction tree can be used over all
sets of observations.

The complete sample space €2 is very large, but the resulting

algorithm only requires storage of the matrices of joint
densities of atoms of neighboring o-fields.

The conventional method corresponds to the case of a
product space, with a uniform measure.

“Measure theory” 1s transparent to the end user.



