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Marginalization Problem

Given an arbitrary function of many variables, find (some of)
its ‘marginals’.  For example
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e.g.  β (...) could be the joint density on variables, then

β1 (x1) = marginal probability of  x1,  and

γ1 (x1) = probability of most likely conf. of rest of variables
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Applications

 Error Correcting Codes

 Image Processing

 Computer Vision

 Networking

 Statistical Physics

Problem:  Computations intractable.  State space is exponential
in number of variables.
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Product Functions and Factorization

Suppose β  factorizes as product of functions of smaller subsets
of variables.  e.g.
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Then certain ‘conditional independencies’ may hold which can
simplify the marginalization task.

E.g. (x0,…, xi) is cond. indep. of (xi+2,…, xn) given xi+1, hence
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Product Functions - Notation

Given

state vector:

a collection of local domains, R:

and local functions (kernels):

Objective function factorizes:

Find marginals:
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Independency Graphs

A graph with nodes corresponding to domains r∈R, s.t.
separation on graph implies (conditional) independence.

A tree is called a ‘Junction Tree’ if  whenever a node r0
separates nodes r1 and r2 on tree, then r1 ∩ r2 ⊆ r0

x1,x2 x1,x3

x1,x2,x4 x4

x1,x2 x1,x3

x1,x2,x4 x4

x1,x2 x2,x3

x1 ,  x3
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Junction Tree Algorithm

(a.k.a. GDL, Belief Propagation, sum-product, …)

 Define ‘messages’ µr,u(xu∩r) for each edge (r, u) of the

independency graph.  Initialize to 1.

 Update messages as:

 Define ‘Beliefs’

r
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Junction Trees

If graph is junction tree, algorithm converges in finite time, and
then beliefs br(xr) are the marginals of the product function.

Given regions, can ‘quickly’ determine if a junction tree exists.
Involves finding a maximal-weight spanning tree of regions.

If none exist, can always expand regions in a way to create a
junction tree, but complexity is exponential in the size of
regions.
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Graphs With Cycles - Perspective

B.P. on graphs with loops is used as approximation to the
marginals, e.g. in Turbo codes and LDPC decoding.

Attempts at justification of approximation on loopy graphs:

 One-loop case (Weiss, Horn et. al.)

 Gaussian case (Van Roy, Weiss)

 Fixed points and stability (Richardson)

 LDPC studies (Gallager, McKay & Neal, Luby et. al.,
Urbanke & Richardson, Shokrollahi).

 Tree-based Reparametrization (Wainwright)
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Probability-theoretic View

Motivation:

 Relying on variables can conceal partial structure in state-
space; can only recognize/create ‘rectangular
decompositions.’

 Generalize the problem to arbitrary state-spaces;  State-space
need not be represented by ‘variables.’
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Example

Let x1,…, xM take value in (a finite semi-group) A and
let  µ(x1,…, xM) = f(x1+…+ xM),   pi(xi) be real functions.

We would like to calculate
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Example, cntd.

GDL Solution:                       Or

x1

xM
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x1,…, xM

x1,…, xM-1

Requires O(|A|M) additions and multiplications.
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Example, cntd.

In comparison, with  Si ≡ xi+…+xM∈A
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This requires only O(M|A|2) additions and multiplications.

is an independency tree, suggesting
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Probability-theoretic GDL

A systematic theory to recognize and exploit such
structures.

Reformulate the MPF problem as taking conditional
expectations in an arbitrary sample space.

Cond. Expectations E[ΠXi| Fj]Marginals βr= ∑x\xr 
ΠXr

Random variables X1,…, XM
Local functions  αr  ,  r∈R

σ-fields F1,…, FM
Local domains r∈R

Arbitrary representationVariables x1,…, xN

PGDLGDL
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 A discrete state-space Ω

 A measure µ(.) on Ω

λ σ-fields Fi on Ω

λ And r.v.’s  Xi ∈ Fi

Preliminaries - Notation
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for each (nonzero measure) atom  f  of Fj

 Want to calculate:



16

Preliminaries, cntd.

 Augmentation: F{1,2} ≡ F1∨ F2

 Conditional Independence:

Say F    GH if

for each atom  h of H:

• If µ(h) ≠ 0 then

• If µ(h) = 0 then

),(ì),(ì)(ì),,(ì,, hghfhhgfgf =∈∈∀ GF

0),,(ì,, =∈∈∀ hgfgf GF
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Marginalization Problem and Junction Trees

Given a collection (Ω, {F1,…, FM}, µ) of meas. spaces,

and r.v.’s Xi ∈Fi :

MPF Problem: For one or more i∈{1,…,M} find  E[Πj Xj| Fi]

A tree with nodes {1,…, M} is called a junction tree if:
∀ A, B ⊂ {1, …, M } and  i ∈ {1, …, M } s.t.

    i separates  A and B on tree, we have FA    ||  FB Fi

As before, a junction tree captures the independencies
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Probabilistic Junction Tree Algorithm

The following algorithm solves the MPF problem (c.f. GDL)

 Define ‘messages’ Yi,j ∈Fj for each edge (i, j) of the junction

tree.  Initialize to 1.

 Update messages as:

 Define ‘Beliefs’

 At termination
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Existence of Junction Trees

Main results:

Given a collection (Ω, {F1,…,FM}, µ) of meas. spaces:

Example: Suppose M=7 and

P2={{1} {3,6,7} {4,5}}  then:
1

3 6

2
4

5

7

λ ∀i =1,…, M, there exists a partition Pi of {1,…, M}\{i}
(called Finest Valid Partition w.r.t. i), and

 If a junction tree exists, then for each i =1,…, M there exists
a J.T. compatible with Pi .
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Ω′

Lifting

Let (Ω, {F1,…, FM }, µ) be a collection of meas. spaces.

Another collection (Ω′, {F1′,…, FM′ }, µ′) is a lifting of

(Ω, {F1,…, FM }, µ) if there is a map f : Ω′ → Ω s.t.:

λ µ′ is consistent with µ under  f , and

 for all i =1,…, M,  f  is (Fi′, Fi )-measurable.

 f -1(F )

Ω

F F ′
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Lifting to Create Conditional Independency

Given F1, F2 and F3  we like to lift in a way so to have:

F1′  ||  F3′ F2′ .

Corresponds to certain matrices of joint measures being rank
one.

If some of these matrices are not rank-one, find a rank-one
decomposition.

  ⇒ ‘lifting’ obtained by splitting the atom corresponding to the
matrix.
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Algorithm to Create a Junction Tree

This algorithm will find a J.T. on {F1,…, FM } if one exists:

 Pick any node i∈{1,…, M} as the root,

 Find any valid partition w.r.t. i, say {c1,…, cl}

 For each  j =1 to l

• Pick a node t∈cj and split atoms of Ft  s.t. Fi   ||   Fcj Ft .

• Find a J.T. on cj, with t as the root.  Attach this tree by
adding the edge (i,t).

 End
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Example 2: Exact Decoding of LDPC Codes

                 : Parity check matrix of an LDPC code with
m ‘checks’ and block size n

 Codewords satisfy   H x=0, with a posteriori probabilities

 Objective: find marginals of P*:
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Example 2, cntd.

 Exact naive GDL solution:  triangulate the graph, and run
J.T. algorithm on the tree of cliques.

 Problem: graph highly connected, so cliques are large,
algorithm inefficient.

 PGDL solution:

state-space = the codebook;  uniform measure;

random variables =
original σ-fields = directions of variables xi’s

⇒Lift using the automatic Matlab algorithm to form a chain.

)|()( * jxyPjxP iii ==
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Example 2, Results:
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Concluding Remarks

 As with GDL, our algorithm generalizes to any ‘semi-field’
(e.g. max-product).

 Cost of lifting is high, but a junction tree can be used over all
sets of observations.

 The complete sample space Ω is very large, but the resulting
algorithm only requires storage of the matrices of joint
densities of atoms of neighboring σ-fields.

λ The conventional method corresponds to the case of a
product space, with a uniform measure.

 “Measure theory” is transparent to the end user.


