Probability-Theoretic Junction Trees

Payam Pakzad,

(with Venkat Anantharam, EECS Dept, U.C. Berkeley)

EPFL, ALGO/LMA Seminar 2/12/2004

Marginalization Problem

Given an arbitrary function of many variables, find (some of) its 'marginals'. For example

$$\beta_1(x_1) = \sum_{x_2, \dots, x_n} \beta(x_1, \dots, x_n)$$

or even
$$\gamma_1(x_1) = \max_{x_2, \dots, x_n} \beta(x_1, \dots, x_n)$$

e.g. β (...) could be the joint density on variables, then β_1 (x_1) = marginal probability of x_1 , and γ_1 (x_1) = probability of most likely conf. of rest of variables

Applications

- Error Correcting Codes
- Image Processing
- Computer Vision
- Networking
- Statistical Physics

Problem: Computations intractable. State space is exponential in number of variables.

Product Functions and Factorization

Suppose β factorizes as product of functions of smaller subsets of variables. e.g.

Markov chain model:
$$\beta(x_0, \dots, x_n) = p(x_0) \prod_{i=1}^n p(x_i \mid x_{i-1})$$

Then certain 'conditional independencies' may hold which can simplify the marginalization task.

E.g. $(x_0,...,x_i)$ is cond. indep. of $(x_{i+2},...,x_n)$ given x_{i+1} , hence

$$\sum_{\{x_0,\dots,x_n\}\setminus x_{i+1}} \beta = \left(\sum_{\{x_0,\dots,x_i\}} p(x_0) \prod_{j=1}^{i+1} p(x_j \mid x_{j-1})\right) \left(\sum_{\{x_{i+2},\dots,x_n\}} \prod_{j=i+2}^{n} p(x_j \mid x_{j-1})\right)$$

Product Functions - Notation

Given

state vector:

$$\mathbf{x} = (x_1, ..., x_N)$$

a collection of local domains, *R*:

$$\forall r \in \mathbb{R}, \ r \subset \{1, \dots, N\}$$

and local functions (kernels):

$$\alpha_r(\mathbf{x}_r), r \in R$$

Objective function factorizes:

$$\beta(\mathbf{x}) \equiv \prod_{r \in \mathbb{R}} \alpha_r(\mathbf{x}_r)$$

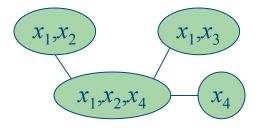
Find marginals:

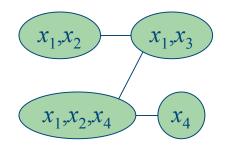
$$\beta_r(\mathbf{x}_r) \equiv \sum_{\mathbf{x} \setminus \mathbf{x}_r} \beta(\mathbf{x})$$

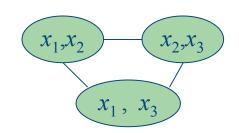
Independency Graphs

A graph with nodes corresponding to domains $r \in R$, s.t. separation on graph implies (conditional) independence.

A tree is called a 'Junction Tree' if whenever a node r_0 separates nodes r_1 and r_2 on tree, then $r_1 \cap r_2 \subseteq r_0$





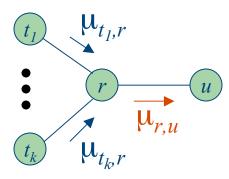


Junction Tree Algorithm

(a.k.a. GDL, Belief Propagation, sum-product, ...)

- Define 'messages' $\mu_{r,u}(x_{u\cap r})$ for each edge (r, u) of the independency graph. Initialize to 1.
- Update messages as:

$$\mu_{r,u}(x_{u\cap r}) \equiv \sum_{x_r \setminus x_u} \alpha_r(x_r) \prod_{t \in N(r) \setminus \{u\}} \mu_{t,r}(x_{r\cap t})$$



$$b_r(x_r) \equiv \alpha_r(x_r) \prod_{t \in N(r)} \mu_{t,r}(x_{r \cap t})$$

Junction Trees

If graph is junction tree, algorithm converges in finite time, and then beliefs $b_r(x_r)$ are the marginals of the product function.

Given regions, can 'quickly' determine if a junction tree exists. Involves finding a maximal-weight spanning tree of regions.

If none exist, can always expand regions in a way to create a junction tree, but complexity is exponential in the size of regions.

Graphs With Cycles - Perspective

B.P. on graphs with loops is used as approximation to the marginals, e.g. in Turbo codes and LDPC decoding.

Attempts at justification of approximation on loopy graphs:

- One-loop case (Weiss, Horn et. al.)
- Gaussian case (Van Roy, Weiss)
- Fixed points and stability (Richardson)
- LDPC studies (Gallager, McKay & Neal, Luby et. al., Urbanke & Richardson, Shokrollahi).
- Tree-based Reparametrization (Wainwright)

Probability-theoretic View

Motivation:

• Relying on variables can conceal partial structure in statespace; can only recognize/create 'rectangular decompositions.'

• Generalize the problem to arbitrary state-spaces; State-space need not be represented by 'variables.'

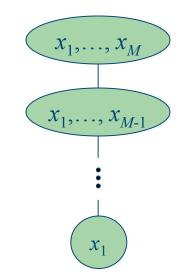
Example

Let $x_1, ..., x_M$ take value in (a finite semi-group) A and let $\mu(x_1, ..., x_M) = f(x_1 + ... + x_M)$, $p_i(x_i)$ be real functions.

We would like to calculate

$$E = \sum_{x_1, \dots, x_M} \mu(x_1, \dots, x_M) \prod_{i=1}^M p_i(x_i)$$

Example, cntd.



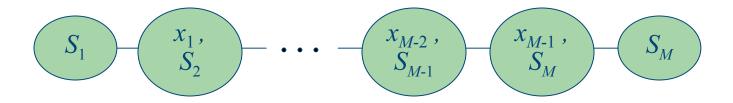
$$x_1$$
 x_1
 x_2
 x_1, \dots, x_M
 x_M

$$E = \sum_{x_1} p_1(x_1) \sum_{x_2} p_2(x_2) \cdots \sum_{x_M} \mu(x_1, \dots, x_M) p_M(x_M)$$

Requires $O(|A|^M)$ additions and multiplications.

Example, cntd.

In comparison, with $S_i = x_i + ... + x_M \in A$



is an independency tree, suggesting

$$E = \sum_{S_1} f(S_1) \sum_{x_1 + S_2 = S_1} p_1(x_1) \cdots \sum_{x_{M-1} + S_M = S_{M-1}} p_M(S_M) p_{M-1}(x_{M-1})$$

This requires only $O(M|A|^2)$ additions and multiplications.

Probability-theoretic GDL

A systematic theory to recognize and exploit such structures.

Reformulate the MPF problem as taking conditional expectations in an arbitrary sample space.

GDL	PGDL	
Variables x_1, \dots, x_N	Arbitrary representation	
Local domains $r \in R$	σ-fields $\mathcal{F}_{\scriptscriptstyle 1}$,, $\mathcal{F}_{\scriptscriptstyle M}$	
Local functions α_r , $r \in R$	Random variables X_1, \dots, X_M	
Marginals $\beta_r = \sum_{x \mid x_r} \prod X_r$	Cond. Expectations $\mathbb{E}[\Pi X_i \mathcal{F}_j]$	

Preliminaries - Notation

- A discrete state-space Ω
- A measure $\mu(.)$ on Ω
- λ σ-fields \mathcal{F}_i on Ω
- λ And r.v.'s $X_i \in \mathcal{F}_i$
- Want to calculate:

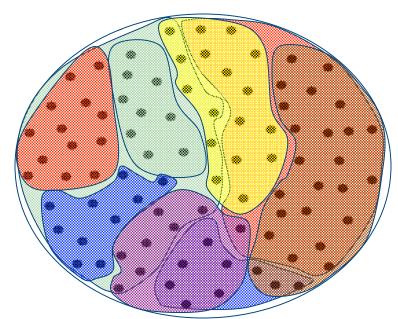
$$E\left[\prod_{i=1}^{M} X_{i} \middle| \mathcal{F}_{j}\right](f) = \frac{1}{i(f)} \sum_{\omega \in f} \prod_{i=1}^{M} X_{i}(\omega) i(\omega)$$

for each (nonzero measure) atom f of \mathcal{F}_j

Preliminaries, cntd.

• Augmentation: $\mathcal{F}_{\{1,2\}} \equiv \mathcal{F}_1 \vee \mathcal{F}_2$

• Conditional Independence: Say $\mathcal{F}^{\perp} \mathcal{G} | \mathcal{H}$ if for each atom h of \mathcal{H} :



- If $\mu(h) \neq 0$ then $\forall f \in \mathcal{F}, g \in \mathcal{G}$, i(f,g,h)i(h) = i(f,h)i(g,h)
- If $\mu(h) = 0$ then $\forall f \in \mathcal{F}, g \in \mathcal{G}$, i(f,g,h) = 0

Marginalization Problem and Junction Trees

Given a collection $(\Omega, \{\mathcal{F}_1, ..., \mathcal{F}_M\}, \mu)$ of meas. spaces, and r.v.'s $X_i \in \mathcal{F}_i$:

MPF Problem: For one or more $i \in \{1, ..., M\}$ find $\mathbb{E}[\Pi_j X_j | \mathcal{F}_i]$

A tree with nodes $\{1,...,M\}$ is called a junction tree if:

 $\forall A, B \subset \{1, ..., M\} \text{ and } i \in \{1, ..., M\} \text{ s.t.}$

i separates A and B on tree, we have $\mathcal{F}_A \perp \!\!\!\perp \!\!\!\perp \mathcal{F}_B \mid \mathcal{F}_i$

As before, a junction tree captures the independencies

Probabilistic Junction Tree Algorithm

The following algorithm solves the MPF problem (c.f. GDL)

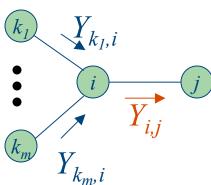
- Define 'messages' $Y_{i,j} \in \mathcal{F}_i$ for each edge (i, j) of the junction tree. Initialize to 1.
- Update messages as:

$$Y_{i,j} = E[X_i \prod_{k \in N(i) \setminus \{j\}} Y_{k,i} \mid \mathcal{F}_j]$$

Define 'Beliefs'

$$B_i \equiv X_i \prod_{k \in N(i)} Y_{k,i}$$

$$B_{i} \equiv X_{i} \prod_{k \in N(i)} Y_{k,i}$$
• At termination
$$B_{i} = \mathbb{E} \left[\prod_{j=1}^{M} X_{j} \mid \mathcal{F}_{i} \right]$$



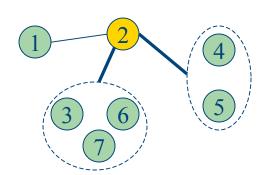
Existence of Junction Trees

Main results:

Given a collection $(\Omega, \{\mathcal{F}_1, ..., \mathcal{F}_M\}, \mu)$ of meas. spaces:

- $\lambda \quad \forall i = 1,..., M$, there exists a partition P_i of $\{1,...,M\} \setminus \{i\}$ (called Finest Valid Partition w.r.t. i), and
- If a junction tree exists, then for each i = 1, ..., M there exists a J.T. compatible with P_i .

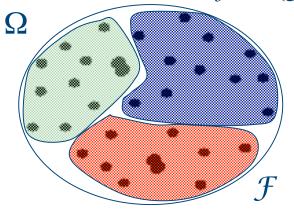
Example: Suppose M=7 and $P_2=\{\{1\}, \{3,6,7\}, \{4,5\}\}$ then:

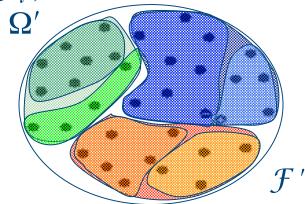


Lifting

Let $(\Omega, \{\mathcal{F}_1, ..., \mathcal{F}_M\}, \mu)$ be a collection of meas. spaces. Another collection $(\Omega', \{\mathcal{F}_1', ..., \mathcal{F}_M'\}, \mu')$ is a *lifting* of $(\Omega, \{\mathcal{F}_1, ..., \mathcal{F}_M\}, \mu)$ if there is a map $f: \Omega' \to \Omega$ s.t.:

• for all i = 1, ..., M, f is $(\mathcal{F}'_i, \mathcal{F}_i)$ -measurable.





Lifting to Create Conditional Independency

Given \mathcal{F}_1 , \mathcal{F}_2 and \mathcal{F}_3 we like to lift in a way so to have: $\mathcal{F}_1' \perp \!\!\!\perp \!\!\!\perp \mathcal{F}_3' \mid \mathcal{F}_2'$.

Corresponds to certain matrices of joint measures being rank one.

If some of these matrices are not rank-one, find a rank-one decomposition.

⇒ 'lifting' obtained by splitting the atom corresponding to the matrix.

Algorithm to Create a Junction Tree

This algorithm will find a J.T. on $\{\mathcal{F}_1, ..., \mathcal{F}_M\}$ if one exists:

- Pick any node $i \in \{1, ..., M\}$ as the root,
- Find any valid partition w.r.t. i, say $\{c_1, ..., c_l\}$
- For each j = 1 to l
 - Pick a node $t \in c_j$ and split atoms of \mathcal{F}_t s.t. $\mathcal{F}_i \perp \!\!\!\perp \!\!\!\perp \mathcal{F}_{c_j} \mid \mathcal{F}_t$.
 - Find a J.T. on c_j , with t as the root. Attach this tree by adding the edge (i,t).
- End

Example 2: Exact Decoding of LDPC Codes

 $\mathbf{H} \in \mathrm{GF}(2)^{m \times n}$: Parity check matrix of an LDPC code with m 'checks' and block size n

• Codewords satisfy $\mathbf{H} \mathbf{x} = 0$, with a posteriori probabilities

$$P^*(\mathbf{x}) = \frac{1}{Z} \prod_{i=1}^n P(x_i) P(y_i^* \mid x_i) \prod_{j=1}^m 1(H_j \cdot \mathbf{x} = 0)$$

• Objective: find marginals of P^* :

$$P^*(x_i) = \sum_{\mathbf{x} \setminus x_i} P^*(\mathbf{x})$$

Example 2, cntd.

- Exact naive GDL solution: triangulate the graph, and run J.T. algorithm on the tree of cliques.
- Problem: graph highly connected, so cliques are large, algorithm inefficient.
- PGDL solution:

state-space = the codebook; uniform measure; random variables = $P(x_i = j)P(y_i^* | x_i = j)$ original σ -fields = directions of variables x_i 's

⇒Lift using the automatic Matlab algorithm to form a chain.

Example 2, Results:

				Complexity		lexity
n	m	С	rate		GDL	PGDL
12	8	2	5/12		1.8 × 10 ³	360
18	б	4	2/3		1.0 × 10 ⁶	5.95 × 10 ³
20	8	3	3/5		1.4 × 10 ⁶	2.02 × 10 ⁴
21	7	3	2/3		1.8 × 10 ⁶	2.14 × 10 ⁴
22	8	4	7/11		8.4 × 10 ⁶	2.40 × 10 ⁴

Concluding Remarks

- As with GDL, our algorithm generalizes to any 'semi-field' (e.g. max-product).
- Cost of lifting is high, but a junction tree can be used over all sets of observations.
- The complete sample space Ω is very large, but the resulting algorithm only requires storage of the matrices of joint densities of atoms of neighboring σ -fields.
- λ The conventional method corresponds to the case of a product space, with a uniform measure.
- "Measure theory" is transparent to the end user.