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Introduction

e Graph products have recently been used to con-
struct explicit families of expander graphs (The
zig-zag product [RVW]).

e This Is a recursive construction that uses graph
products.

e Question: Can we, in a similar way, use products
of codes to recursively construct explicit families of
good binary codes?

e It turns out that the problem of finding good binary
codes can be rephrased as finding Cayley graphs
over (F%, +) that are good expanders



Expander graphs
e Different ways to characterize expander graphs.

e The most intuitive is that any set of nodes must
have many neighbors (combinatorics)

e There is also an algebraic characterization: Look
at \(G), the second largest eigenvalue (in abso-
lute value) of the normalized adjacency matrix of the
graph.

e Smaller A(G) means better expansion

e A constant degree expander family is a family
{G;}; of [n;, d, \;]-graphs with lim;_, ., n; = oo and
A; < X for some fixed A < 1.

e Random regular graphs are good expanders.

e Applications: Derandomization, cryptography, cir-
cuit complexity, topology, etc...



Code - Expander connection

e Family of good codes: A family {C;}; of codes
with parameters [n;, k;, d;], with k;/n; < R and
d;/m; < 6 forsome R,0 < 1 (lim;_ o n; = 00).

e Different ways to relate expander graphs to error
correcting codes:

e Expander codes (Sipser, Spielman). From a fam-
Ily of expander graphs, construct a family of good
codes.

e Since there are known explicit constructions for
the required expander families, this leads to explicit
constructions of good codes.

e Codes described by their Tanner graph



Code - Expander connection

e Cayley graph: Given a group G and a generating
set S. We consider the graph with:

Nodes: elements of GG

Edges: g1 ~ go <= dse€ S :gr=g1 + s.

e Take the k£ x n generator matrix of binary code C.
It has rank k.

e So its n columns generate (F%. +). We let G(C)
be the Cayley graph of (F%, +) with respect to this
generating set.

e Theorem. The parameters are the following:
2d

n

[n,k,d}-code — [Qk,n,l— -graph

e S0 good codes lead to good expanders.



e Recall: e We are looking to define code products
e \We have a correspondance:

Code « Cayley graph over IF’E

e Obvious idea: What about applying the zig-zag
to the Cayley graphs? Problem: The result is no
longer an F’;-Cayley graph.

e Need a graph product that preserves this property.

e A graph product that does this: Tensor product



Graph tensoring

e A, B graphs with node sets
[nal ={1,...,n4}
[ng]l ={1,...,np}

o AR B:
e Nodes: [n 4] x [ng]
e Edges: (a,b) ~ (a',b)) <= a~yd
b~pb
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Graph tensoring

e Parameters [n4 -np,d4 - dg, max(Ag, AB)]

e Increases the size of the graph (dimension): good
e Maintains the second eigenvalue (distance): good
e But also increases the degree a lot (length): bad

e Problem for codes: Degree increases too much
(== length of code increases faster than dimen-
sion).

e Idea: Remove some edges from A® B in a clever
way.
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Reducing the degree

e Graph squaring: G2 has the same nodes as G,
take all paths of length 2 as edges.

e August 2005: Rozenman and Vadhan presented
a new operation derandomized squaring (S). This
Involves squaring a graph, and then removing some
edges according to a second graph.

e Reduces degree at the cost of slightly worse ex-
pansion

e Can be seen as a projection of the zig-zag product

A®(C?) = P|(A@C)?|

e We wanted to remove edges from the tensor prod-
uct (without losing too much expansion)

e \We can use this idea to come up with deran-
domized tensoring: Take the tensor product of two
graphs, and remove edges according to a third bi-
partite graph.
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Derandomized tensoring (1)

e A, B graphs with node sets [n 4], [np], degrees
dA7 dB'

e Assume edge colorings

pa E(A) — [dal,
and likewise ¢ g.

e For a Cayley graph: 1 color <+ 1 generator

e Suppose we have a bipartite graph C with d 4 left
nodes, and dp right nodes.

e SO0 there is a correspondance:
colors of A < left nodes of C
colors of B < right nodes of C

e A®c B: node set [ny4] X [ng]

e Edges: (a,b) ~ (d/,V) < an~ya
b~p b
wala,a’) ~c p(b,b)
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Derandomized tensoring (2)

o A R B:
e Number of nodes =n4 - np
e Degree = |Edges(C)|

e If C'Is biregular of left and right degrees 2, r:
Degree = dy - ¢ =dpg - r.

e If C'Is the complete bipartite graph then
A RC B=AXB.

e In terms of codes this involves appending certain
columns from the two generator matrices.
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Expansion properties

e What are the expansion properties of this prod-
uct?

Theorem. Suppose without loss of generality that
Ap < Ay. Suppose also that C' is biregular. Then

AgoB < Max <>\A, AB, m(Ag, AR, >\C)>,
where we let

f(a,b,c) = ab—I—C\/(l—aQ)(l—bQ),
g(b,c) (S -2 +1) 17
m(a, b, c) f( min(a, g(b, c)),b,c).

e Simpler case: If A4 = Ap then
Mo < Max </\A,/\i + o (1 — A%))
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Projection

e The analysis is done by viewing A ®~ B as a
projection of a larger graph.
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Projection

e The analysis is done by viewing A ®~ B as a
projection of a larger graph.

A
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Proof of Theorem

e We view our graph over [n 4] x [ng] as projection

of a graph over [n4] x [ng] x [d4 + dB].
d

e Normal tensoring: A® B = A - B, where
A=AQ® Id(ng)
B=1Id(ny) ® B

e Derandomized tensoring:
A®c B =Proj[X - C - X],

where o X depends on A and B,
o C =Id(nynp) ®C.
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Proof of Theorem

e Lemma. Let S be the space

S = (1nA)J_ &) (1nB)J_ X 1|c!l
The second eigenvalue of this projection is

A(Proj[X'C*X']) = max |<XC<X. ’x>‘.

e We decompose S into
(1t eu,e1) o (1,014, @1))

nB d)
S S
1 1L
o (17, ®17,®1))
S3

e Deduce that iIf x € S then
XCX-
|< x’x>| S MmaxX (AA,AB,m()\A,AB,AC))
(T, x)
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Extensions

e This idea can be also be used to get a different
analysis of the derandomized square

AMAG®C) < A%+ A¢- (1-23)

e \We can also create a derandomized zig-zag prod-
uct

MA@CB) <A+ 2p+ 23+ A0 (1-23),

smaller degree than the original zig-zag product, at
the cost of slightly worse expansion.
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Conclusion

e There is a coding theoretic motivation behind find-
Ing graph products with good expansion properties
and small degree.

e We can define derandomized version of known
products, decreasing the degree a lot while only slightly
worsening the expansion.

e The analysis is done by looking at the product
as a projection of a larger graph, whose adjacency
matrix we can express easily.

e These tools can be used to obtain bounds the ex-
pansion of other graph products.
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