
Some graph products and
their expansion properties

Andrew Brown, EPFL

Joint work with Amin Shokrollahi.

1

Introduction

• Graph products have recently been used to con-
struct explicit families of expander graphs (The
zig-zag product [RVW]).

• This is a recursive construction that uses graph
products.

• Question: Can we, in a similar way, use products
of codes to recursively construct explicit families of
good binary codes?

• It turns out that the problem of finding good binary
codes can be rephrased as finding Cayley graphs
over (Fk

2,+) that are good expanders

2

Expander graphs

• Different ways to characterize expander graphs.

• The most intuitive is that any set of nodes must
have many neighbors (combinatorics)

• There is also an algebraic characterization: Look
at λ(G), the second largest eigenvalue (in abso-
lute value) of the normalized adjacency matrix of the
graph.

• Smaller λ(G) means better expansion

• A constant degree expander family is a family
{Gi}i of [ni, d, λi]-graphs with limi→∞ ni = ∞ and
λi ≤ λ for some fixed λ < 1.

• Random regular graphs are good expanders.

• Applications: Derandomization, cryptography, cir-
cuit complexity, topology, etc...

3

Code - Expander connection

• Family of good codes: A family {Ci}i of codes
with parameters [ni, ki, di], with ki/ni ≤ R and
di/ni ≤ δ for some R, δ < 1 (limi→∞ ni = ∞).

• Different ways to relate expander graphs to error
correcting codes:

• Expander codes (Sipser, Spielman). From a fam-
ily of expander graphs, construct a family of good
codes.

• Since there are known explicit constructions for
the required expander families, this leads to explicit
constructions of good codes.

• Codes described by their Tanner graph

4

Code - Expander connection

• Cayley graph: Given a group G and a generating
set S. We consider the graph with:

Nodes: elements of G

Edges: g1 ∼ g2 ⇐⇒ ∃s ∈ S : g2 = g1 + s.

• Take the k × n generator matrix of binary code C.
It has rank k.

• So its n columns generate (Fk
2,+). We let G(C)

be the Cayley graph of (Fk
2,+) with respect to this

generating set.

• Theorem. The parameters are the following:

[

n, k, d
]

-code →
[

2k, n,1 −
2d

n

]

-graph

• So good codes lead to good expanders.

5

• Recall: • We are looking to define code products
• We have a correspondance:

Code ↔ Cayley graph over F
k
2

• Obvious idea: What about applying the zig-zag
to the Cayley graphs? Problem: The result is no
longer an Fk

2-Cayley graph.

• Need a graph product that preserves this property.

• A graph product that does this: Tensor product

6

Graph tensoring

• A, B graphs with node sets
[nA] = {1, . . . , nA}

[nB] = {1, . . . , nB}

• A ⊗ B:
• Nodes: [nA] × [nB]

• Edges: (a, b) ∼ (a′, b′) ⇐⇒ a ∼A a′

b ∼B b′

7

Tensor product A ⊗ B

BA

8

copies of B

A

9

10

11

12

13

14

15

16

degree 4

17

Graph tensoring

• Parameters [nA · nB, dA · dB,max(λA, λB)]

• Increases the size of the graph (dimension): good
• Maintains the second eigenvalue (distance): good
• But also increases the degree a lot (length): bad

• Problem for codes: Degree increases too much
(=⇒ length of code increases faster than dimen-
sion).

• Idea: Remove some edges from A⊗B in a clever
way.

18

Reducing the degree

• Graph squaring: G2 has the same nodes as G,
take all paths of length 2 as edges.

• August 2005: Rozenman and Vadhan presented
a new operation derandomized squaring s©. This
involves squaring a graph, and then removing some
edges according to a second graph.

• Reduces degree at the cost of slightly worse ex-
pansion

• Can be seen as a projection of the zig-zag product

A s©(C2) = P
[

(A z©C)2
]

• We wanted to remove edges from the tensor prod-
uct (without losing too much expansion)

• We can use this idea to come up with deran-
domized tensoring: Take the tensor product of two
graphs, and remove edges according to a third bi-
partite graph.

19

Derandomized tensoring (1)

• A, B graphs with node sets [nA], [nB], degrees
dA, dB.

• Assume edge colorings
ϕA : E(A) → [dA],

and likewise ϕB.

• For a Cayley graph: 1 color ↔ 1 generator

• Suppose we have a bipartite graph C with dA left
nodes, and dB right nodes.

• So there is a correspondance:
colors of A ↔ left nodes of C

colors of B ↔ right nodes of C

• A ⊗C B: node set [nA] × [nB]

• Edges: (a, b) ∼ (a′, b′) ⇐⇒ a ∼A a′

b ∼B b′

ϕA(a, a′) ∼C ϕB(b, b′)

20

Derandomized tensoring (2)

• A ⊗C B:
• Number of nodes = nA · nB

• Degree = |Edges(C)|

• If C is biregular of left and right degrees `, r:
Degree = dA · ` = dB · r.

• If C is the complete bipartite graph then
A ⊗C B = A ⊗ B.

• In terms of codes this involves appending certain
columns from the two generator matrices.

21

Expansion properties

• What are the expansion properties of this prod-
uct?

Theorem. Suppose without loss of generality that
λB ≤ λA. Suppose also that C is biregular. Then

λA⊗CB ≤ max

(

λA, λB, m(λA, λB, λC)

)

,

where we let

f(a, b, c) = ab + c
√

(1 − a2)(1 − b2),

g(b, c) =
(

c2

b2
− c2 + 1

)−1/2
,

m(a, b, c) = f
(

min(a, g(b, c)), b, c
)

.

• Simpler case: If λA = λB then

λA⊗CB ≤ max

(

λA, λ2
A + λC · (1 − λ2

A)

)

22

Projection

• The analysis is done by viewing A ⊗C B as a
projection of a larger graph.

23

Projection

• The analysis is done by viewing A ⊗C B as a
projection of a larger graph.

24

Proof of Theorem

• We view our graph over [nA]×[nB] as projection
of a graph over [nA] × [nB] × [dA + dB︸ ︷︷ ︸

d

].

• Normal tensoring: A ⊗ B = Â · B̂, where
Â = A ⊗ Id(nB)

B̂ = Id(nA) ⊗ B

• Derandomized tensoring:

A ⊗C B = Proj[X̂ · Ĉ · X̂],

where • X̂ depends on A and B,
• Ĉ = Id(nAnB) ⊗ C.

25

BC

A

26

B

A

C

27

28

• Graph Ĉ

29

30

31

32

Graph X̂

33

Proof of Theorem
• Lemma. Let S be the space

S = (1nA)⊥ ⊗ (1nB)⊥ ⊗ 1
‖
d

The second eigenvalue of this projection is

λ
(

Proj[X̂ĈX̂]
)

= max
x∈S

∣
∣
∣〈X̂ĈX̂ · x, x〉

∣
∣
∣

〈x, x〉
.

• We decompose S into(

1⊥nA
⊗ 1

‖
nB ⊗ 1

‖
d

)

︸ ︷︷ ︸

S1

⊕
(

1
‖
nA ⊗ 1⊥nB

⊗ 1
‖
d

)

︸ ︷︷ ︸

S2

⊕
(

1⊥nA
⊗ 1⊥nB

⊗ 1
‖
d

)

︸ ︷︷ ︸

S3

.

• Show that
x1 ∈ S1 =⇒ |〈X̂ĈX̂ · x, x〉| ≤ λA · 〈x, x〉
x2 ∈ S2 =⇒ |〈X̂ĈX̂ · x, x〉| ≤ λB · 〈x, x〉
x3 ∈ S3 =⇒ |〈X̂ĈX̂·x, x〉| ≤ m(λA, λB, λC)·

〈x, x〉

• Deduce that if x ∈ S then

|〈X̂ĈX̂ · x, x〉|

〈x, x〉
≤ max

(

λA, λB, m(λA, λB, λC)
)

34

Extensions

• This idea can be also be used to get a different
analysis of the derandomized square

λ
(

A s©C
)

≤ λ2
A + λC · (1 − λ2

A)

• We can also create a derandomized zig-zag prod-
uct

λ
(

A z©CB
)

≤ λA + λB + λ2
B + λC · (1 − λ2

B),

smaller degree than the original zig-zag product, at
the cost of slightly worse expansion.

35

Conclusion

• There is a coding theoretic motivation behind find-
ing graph products with good expansion properties
and small degree.

• We can define derandomized version of known
products, decreasing the degree a lot while only slightly
worsening the expansion.

• The analysis is done by looking at the product
as a projection of a larger graph, whose adjacency
matrix we can express easily.

• These tools can be used to obtain bounds the ex-
pansion of other graph products.

36

