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1 Introduction

In the past week, I read some papers on applications of coding theory in
biology, the summary of which is given in the next section.

2 Coding and Molecular Biology

During my research on applications of information theory in bioinformatics,
I also encountered some promising applications for coding theory. Therefore,
I have started studying possible applications of coding theory in biology. In
particular, I would like to investigate possible coding patterns in bioinfor-
matics and neural propagation.

Coding and information theory for biological systems are still in their
infancy. At this point, there are more questions than answers in this area.
The redundancy in genome and DNA is an accepted fact. However, whether
this redundance is because of an error correction code is still not known.
Therefore, Development of coding-theoretic frameworks for molecular biology
is an ongoing endeavor [2]. We need to search for classical and quantum codes
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and, in some cases, different types of coding [13]. According to [13], we can
divide the field into four groups, according to their research subject”

1. Applications of information theory to biology

2. Existence of error correction in biological information processing

3. Applications of coding theory to biomolecular computing (e.g., DNA
computing)

4. Applications of coding theory to computational molecular biology and
bioinformatics.

There are different mechanisms of information exchange in the genetic sys-
tems. Therefore, many researchers have attempted to model these processes
from information theoretical point of view. Three of these models have be-
come more popular. The first of is suggested by Gatlin [1]. In Gatlin’s model,
DNA is an coded sequence which encodes vital information. The decoded
messages are the amino acids which build proteins in the end.

The second model is due to Yockey [3]. His model is based on data storage
systems and Turing machine. DNA is assumed to be the input tape where
sequence of bits are stored. The tape is feeded into the Turing machine
equivalents, RNA molecules. The output is the amino acids, just like the
Gatlin’s model [1].

The third and the most promising model is the one suggested by May
et. al. [4]. In their proposed framework, DNA is the output of and en-
coded that codes biological information. The DNA replication process is the
communication channel which is used to transfer genetic data between two
generations. The decoding process is done by RNA molecules after which
amino acids are given as the output messages.

None of the above models discuss the origins of such error control coding.
In fact, even the existence of such coding scheme is at question as no one has
been able to prove its existence. Nevertheless, we have an ever increasing
amount of evidence that suggest error control codes must be present in ge-
netic systems. For instance, as Battail argues, who is also a coding theorist,
error control becomes obvious when one notes that the number of errors in a
k-symbol message that has been replicated r times is approximately equal to
the number of errors in an unreplicated message with r×k symbols. Thus, in
order to have a reliable message during the life cycle of an organism (let alone
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during the evolutionary time scale!) the message must have good methods
of error correction.

Another very interesting price of evidence lies in the proof-reading mech-
anism of DNA replication process. Proof-reading mechanisms are observed
during DNA replication, and when the activity of these polymerase mecha-
nisms are blocked, error rates increase from 10−6 to 10−3 [7].

As a matter of fact, a number of researchers have made an effort to
identify block codes in the DNA [8], [7]. None of them were able to find such
codes. However, as they have already mentioned, their approaches were too
simplistic and limited. Moreover, neither of them addressed the existence
of convolutional codes. In fact, Liebovitch et al. [8] suggest that a more
comprehensive examination would be required.

Nevertheless, Rosen et al. have used an interesting approach in using
finite fields to represent the four nucleotides and then use finite field arith-
metic to find the parity check matrix of genetic code. They have assumed the
existence of a linear (n, n− 1) code [7] and divide the whole DNA sequence
into frames of n nucleotides. Using Gram-Schmidt algorithm, they identify
the basis of the subspace formed by these vectors of length n. Having built
the basis, the single vector of the parity check matrix could be found by
looking for a base vector whose corresponding coordinate is zero when all
vectors are expressed as a linear combination of basis.

Schmidt and May [10] exploited graph-theoretic methods to analyze er-
ror correction and detection properties of Escherichia coli K-12 translation
initiation sequences. They first prove that in contrast to binary random se-
quences, binary block codes form distinctive cluster graphs. Then, they have
applied their method to Escherichia coli K-12 translation initiation sequences.
Their results show that non-initiation sites fail to cluster into distinct groups.
However, cluster formations in valid initiation sequences are clearly observed,
suggesting the possibility of existence of an error control coding mechanism
in E. coli’s translation initiation sites.

Another important point in analyzing coding properties of DNA is iden-
tifying system characteristics such as the channel capacity [2]. To calculate
the capacity, we must have the error probability of the channel. This trans-
lates into mutation rate in May et al.’s model in which the DNA replication
process is modeled as a communication channel. Some results on the rate of
mutation in different species could be found in [11] and [12]. Based on these
numerical values on mutation rate, channel capacities of different organisms
are illustrated in figures 1 and 2 [2].
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Figure 1: Capacity of prokaryotic replication channels [2].

4



Figure 2: Capacity of eukaryotic replication channels [2].
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At this point, an important question arises: even if the existence of error
correction codes in DNA are proved, how can we identify the coding scheme?
Several researchers have started to answer this question by proposing different
coding methods and testing them against biological findings. May et al. [5],
[6] have modeled mRNA as a noisy, systematic zero-parity encoded signal
and the ribosome as an (n,k) minimum-distance block decoder. Their idea is
to build the parity check matrix of the (n,k) code by finding the set of vectors
that are orthogonal to codewords. Then choose the best possible parity check
matrix. Here, the best matrix is the one with the highest fitness, which is a
function of the number of zeros in H and its syndrome S.

The applications of spin glasses and statistical physics are quite well
known in coding theory. On the other hand, there exists an interesting
relationship between spin glasses and origin of life [13].

2.1 Iterative Decoding and Genomics

Another close relationship between coding theory and genomics is iterative
codes such as LDPC and similar codes, in which we have a sparse matrix
and fast decoding. The performance of the decoder improves over time and
iteration by iteration. While this seems bizarre, there is growing amount of
evidence that the coding techniques in genome, if any, are very similar to
that of LDPC-like codes. For one, as Gupta points out [13]: ”The need to
be greedy speaks against the employment of long block and convolutional
codes in the case of sensory perception/pattern recognition, too. However,
there are now iterative decoders of the turbo code type for certain simple
convolutional code and other code families (MDPC families, e.g.) with rela-
tively short constraint lengths which have the advantage that a turbo (i.e.,
iterative, effectively maximum-likelihood-seeking) decoder (if there can be
said to be a decoder in the brain and anyone can locate where) would be ca-
pable of producing a suboptimum decision at a moments notice. Moreover,
this suboptimal decision would become increasingly close to optimum over
time if it does turn out that the situation allows for sufficient time prior to
decision making”.

In order to understand how iterative decoding in genome works, one must
become familiar with the concept of Regulator Network of Gene Interactions
(RNGI). According to findings of biologists, genes form a network meaning
that the activity of one gene affects those of others. More precisely, genes
act as a switch: when one of them is expressed (switched on), it may also
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switch some other genes on or off. This is what called RNGI [14].
There are various mathematical models for modeling RNGIs. However,

the most widely used model is the so called NK-model [15], [16]. Here is how
NK-model works: we have N genes and each gene is affected by K other
genes. As already mentioned, these genes act as binary switches: they are
either on or off. Their state depends on the activities of other genes. This
control action is known as epistasis and is described in terms of a genetic
graph. The nodes of this graph represent genes and a directed edge exists
between two interacting genes. The average incoming degree of the nodes
is K. For the purpose of analysis, one can describe the genetic graph by
a bipartite graph, where the left hand side nodes represent genes, and the
nodes on the right hand side represent control nodes for each gene. Genes
connected to control node Cj exhibit an influence on the operation of gene
G [14].

NK-model is a special case of Boolean Networks (BN) which has appli-
cations in biology, mathematics and communications. In fact, BNs contain
LDPC codes as a special case [14].

There exist many biological indications that the proofreading mechanism
of DNA transcription is intimately connected to the RNGl mechanism. Fur-
thermore, malfunctions of the proofreading mechanism are known to cause
disease such as cancer. Therefore, in [14] the authors conjecture that during
the process of DNA replication, nodes of the genetic network are arranged
in a special form that only allows valid genes as the codewords and an error-
control code. If a mismatch occurs during the replication, some sort of fast
decoding method is used to identify the erroneously copied genes. Then,
these genes are undergone another level of internal error control which leads
to determining the erroneous nucleotides. In other words, both genes and nu-
cleotides are involved in the error control process. The global Genetic Error
Control (GEC) code uses genes rather than three nucleotides as its symbol
while the local (internal) GEC uses the nucleotides as its symbols and acts
within a gene. As they have mentioned in their paper: ”The error control
capability of a genome does not lie in the DNA code structure alone, but pri-
marily in the way genes interact. There are several biological characteristics
that seem to support this conjecture, but the most interesting one is based
on the binding patterns of nucleases. The base excision repair pathway that
provides for most of the error control consists of arrays of enzymes known as
nucleases. The nucleases enzymes monitor DNA for the presence of damaged
binding sites. Nucleases jump from one position in the genome to another,
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in order to collect information about the erroneous sites. Hence, the genome
seems to be globally connected and the proofreading code could operate on
the global structure”.
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