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1 Introduction

During the past week, I studied more papers on the applications of coding
theory in genetics and bioinformatics. The summary of these papers are
given in the next section. Based on these works, it seems that coding theory
has much more applications in genetics other than searching for error control
coding mechanisms in DNA.

This report is divided into several subsections, based on the topic of the
paper and the application of coding theory in bioinformatics. At first, I
will discuss the works that address the existence of an error control coding
method in genome. Later on, I will explain other possible applications of
coding theory in molecular biology.

2 Coding Theory and Existence of Error Cor-
rection Codes in DNA

In the previous report, I mentioned that there is an ever growing amount of
evidence suggesting the existence of an error control coding method in DNA.



In addition to the works mentioned in the previous report, there are some
other papers dedicated to this subject.

Let me start by the paper that I think is one of the most interesting papers
on this topic since its author is a coding theorist and not a biologist [2]. In
this paper, the author argues that there are a lot of evidence suggesting the
existence of error correction mechanisms in genome. The first argument in
favor of such a coding is the fact that mutations in the genome replication
due to chemical agents or radiations, are responsible for aging and certain
diseases like cancers. Noting that genetic data is replicated several million
times in evolutionary time scale, if there were no error correction mechanism,
the accumulation of errors during periods million times longer would simply
make genetic communication, and hence life, impossible.

Moreover, it is quite surprising that while the process of DNA replication
occurs in a noisy environment, the cell, the replication error rate is as low
as 107 mutations/nucleotide. This value is noticeable as DNA replication
procedure alone has an error rate of 1073 to 107° [11]. One might argue that
the final low error rate is a result of DNA’s internal proofreading mechanism:
when copied, the helical structure unzips into two separate strands. RNA
uses one strand to read DNA and then check the read sequence with the other
strand. If they matched, it proceeds. Otherwise, it waits until the correct
nucleotide is restored. This simple proofreading reduces the error rate to
approximately 1071, Moreover, there are other proofreading mechanisms as
well.

However, the proofreading mechanisms can at best ensure that the copy
is faithful to the original. In other words, they can correct the errors which
occur within the replication process but not those that may affect the original
itself [2].

Another piece of evidence that suggests the role of evolution and natural
selection in devising error correction methods in DNA comes from the fact
that error rates are higher in simple species such as viruses and bacteria
compared to that of highly developed ones such as mammals [2].

In [11], the author develops a method to uncover an error correction
coding structure in the nucleotide sequence. While [11] contains some new
ideas, the main results of the paper are the ones presented in the authors’
earlier paper [12]. The main question that the author tries to answer is:
how does DNA protect itself from error? The author suggests a method for
finidng the answer of this question and if there is an error correcting code in
genome. The main idea behind her approach is to check the dimensionality



of n-tuples in genome. If there is a coding method there, then there must be
redundancy among the n-tuples and the dimensionality must be less than n.
Generally speaking, any method for finding the dimensionality of
a subspace in a space defined by n-tuples would be useful in this
area. More specifically and as mentioned in the paper, there is a need
for a general approach to find k-parity bits placed in any order in
any n-size code to discern an (n, k) block coding structure from a
DNA sequence.

Nevertheless, there are a lot of difficulties in the case of genome sequence.
First of all we neither know n nor k. Furthermore, we do not even know if the
coding scheme, if it exists, is a block code. As suggested by May et. al [9],
convolutional codes seem to be a better model in certain cases. In addition
to all these problems is the reading frame issue. In a traditional coding
method, the decoder knows the beginning of each new codeword. However,
in a genome we have no clue about the beginning of a frame. Assuming
codewords with length n, we must consider all possible reading frames from
the beginning of the genome (total of n possible ways).

While the idea considered in [11] is very interesting and promising, their
model is quite unrealistic (That’s probably the reason they have not yet
found any sign of linear coding in genome of primal species such as E. Coli
bacteri). For one, the author has assumed that the whole genome is a coded
sequence and divided it into N vectors (codewords) with length n. She
has then proposed a novel approach to compute the dimensionality of the
resulting N X n matrix, obtained by putting the codewords and the rows of
the matrix. However, in my opinion, the assumption that the whole genome
is a coded sequence is rather simplistic and it is probable that some parts
are coded while the other parts have left uncoded for evolutionary reasons.

On other fronts, Mac Donaill has suggested a parity check code interpre-
tation of nucleotide composition [8]. I have not yet read this paper and its
details are to be overviewed in my next report.

Another very interesting subject is mentioned in [6] where authors suggest
that the current assignment of codons to amino acids are based on error
minimization criteria. In other words, they claim that natural selection has
chosen amino acid to codon assignment such that errors in translation process
are minimized.

In order to prove their claim, the authors have first defined a measure
to evaluate the codewords of a code quantitatively, just like the hamming
weight in coding literature (in this case, the authors have used polarity of
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the corresponding amino acid as the measure). Then, given a codon, they do
a single mutation in the codon and ”decode”! the corresponding amino acid
of the resulted codon. They then measure the distance between the new and
original amino acids to asses the strength of the coding method. The ideal
case is that a single mutation does not change the resulting amino acid. By
repeating this process for all of the three nucleotides in a codon, and for all
codons, and then averaging the results according to a weight function, we
will obtain measure of how good a code is. The lower this measure is, the
stronger the code is.

The authors have then build many random ”codes” by arbitrarily assign-
ing codons to codewords and evaluated their strength based on the afore-
mentioned measure. Their result show that only 1 of codes (from a pool of
1 million random codes) performed better than the standard genetic code.
Therefore, their work clearly suggest that the codon assignment is optimized
by evolution in a way to minimize translation errors.

Furthermore, as mention in [3], the codons which ”code” for one amino
acid are more closely related to one another (in sequence) than they are
related to codons that code for other amino acids. In other words, codons
that code for one amino acid differ in several cases by just one nucleotide.
Thus, single nucleotide mutations (especially in the third location) will often
not change the resulting amino acid.

Nevertheless, there are a few drawbacks in the approach of [6]. First
of all, the strength of code is their method is completely dependent on the
feature used to measure the codewords. In other words, and as the authors
have mentioned themselves int heir paper, while some properties may hint
for support of existence of error correcting codes, it may not happen for
other properties. Therefore, it is of outmost importance to choose
the measure wisely.

A further argument in favor of the existence of ECC in genome comes
from the fact that this hypothesis in genome helps us explain some puzzling
phenomena very easily, which otherwise could not be explained simply [2]:

e The fact that the species are discrete and the fact that evolution pro-
ceeds by jumps: a puzzling fact in biology is the discreteness of species.

'T have put decode between quotation marks because in genomics literature, coding and
decoding sometimes refer to the translation procedure in DNA where a gene is ”decoded”
to build the corresponding protein.



Why don’t we have a spectrum of living things instead of having dif-
ferent species and families? Error correction codes could explain this
phenomena quite easily and in a neat matter: small number of muta-
tions (errors in close distance of current codewords) are corrected while
the ones with larger distances are left uncorrected. Hence, they result
in new species! In other words, genomes located in a distance less than
that of the minimum distance of the code can not exist in outside world!

e The trend of evolution towards increased complexity: longer and more
complex genomes means better error correction (as the length of the
genome, i.e. codeword, goes to infinity, coding becomes better, which
is a well known fact in coding literature.)

2.1 Soft Codes and Genetics

Battail has also introduced the concept of soft codes in genetics [2]. Basi-
cally, there are two ways of defining a code: specifying its construction rules
(as communication engineers do) or specify the required constraints of the
codewords. He suggests that the second approach is more appropriate for
natural phenomena in which the assumption of deterministically specifying
the construction rules seems nave.? Moreover, the constraints are expressed
in a probabilistic matter. Therefore, the main parameters of a code, like its
minimum distance, then become random variables.

Interestingly, this resembles some works on random codes (like the one
we are working on with Raj and Payam) in which the generator and parity
check matrices are not fixed but are drawn randomly from an ensemble of
codes for which a general constraint, such as the weight of each column in
generator or parity check matrix, is specified in advance.

To get a better understanding of soft codes, think of natural languages.
In a natural language, there are a lot of constraints such as the properties
of the vocal tract, which limits the number of possible words, constraints
on the meaning of the actual words (lexicon) out of the pool of possible
words, constraints of having meaningful sentences and so on. In other words,
phonetics, lexicon, syntax (grammar) and overall meaning of the sentence are
the constraints on natural languages. At the same time, natural languages
have a great capability of error correction (both in oral and written forms).

2In my opinion, the first approach is similar to fixing the generator matrix while the
second one is to determine the parity check matrix, in a probabilistic manner



Furthermore, a language is defined by distinct constraints acting at sev-
eral hierarchical levels. For instance, phonetic constraints, which are due
to the structure of the vocal tract, are more fundamental than constraints
specific to a given language, which are social conventions inherited from his-
tory. The same level of hierarchy and constraints are also present in DNA:
chemical constraints on nucleotides and their pairings, the lexicon (genes)
and meaningful (functional) proteins. These are examples of what is called
nested soft codes [2].

In a nested code, some parts of data are protected more than other parts.
In other words, some parts of the data are first coded and then the coded
sequence is coded again using a possibly different coding approach and so on
(similar to raptor codes!).

There are some evidence that the error correcting mechanism in genome,
if any, is a nested code. In fact, vital genes need much more protection.
In fact, these genes are preserved among generations of far-related species.
For instance, the HOX genes which determine the organization plan of living
beings are shared by, e.g., humans and flies, which diverged from a com-
mon ancestor hundreds of millions of years ago [2]. A similar scheme has
independently been used by Barbieri to describe the organic codes [1].

2.2 Searching for ECC in DNA

Searching for error correction codes is much more difficult than one might
imagine. First of all, what is the coding alphabet? The trivial answer to this
question is that the alphabet are the four nucleotides used in construction of
DNA. However, this is similar to saying that English alphabet is composed
the set of vertical and horizontal lines that are used to build the actual letters.
My colleagues and I have worked on this issue before and our results suggest
that the letters of genetic language, if there is any language, is actually not
the four nucleotides but a combination of them, just like the situation in
natural languages [13].

Another challenge comes from the codes being nested. If this hypothesis
is correct, i.e. the ECC in genome is nested, the set of alphabets used in
each of the encoders in a nested code may be different from the other codes.
Therefore, we have to find set of physiologically meaningful alphabets.



3 Coding Theory and Modeling Gene Regu-
latory Networks

Gene Regulatory Networks (GRNs) (or Regulator Network of Gene Interac-
tions (RNGI), as I stated in my previous report) are an important field in
system biology [7] because complex interaction patterns among genes in a
genome has a big impact on our understanding of several biological proce-
dures including disease development (particularly cancer).

In the most general model of GRNs, the influence of genes 1,...,n on
gene ¢ is captured by the following equation:
dv;
= v, o) 1)

where f; is an arbitrary function depending on the model and v; represent
the expression level of gene j.

Recently, a new idea has been introduced, mainly due to Milenkovic® and
her team (see for example [4]), which suggests novel applications of coding
theory in genetics. While investigating the possible existence of an error
control coding mechanism in DNA seems very interesting and promising,
the mechanisms based on which this code is implemented in genome is not
known.

As T mentioned in my previous report, Milenkovic et. al [10] have sug-
gested that iterative decoding methods might be present in GRNs. In a
typical genome, genes form a network in a way that they act as a switches:
when one of them is expressed (switched on), it may also switch some other
genes on or off. This is what called GRNs. As mentioned before, in [10] the
authors conjecture that during the process of DNA replication, nodes of the
genetic network are arranged in a special form that only allows valid genes
as the codewords and an error-control code. If a mismatch occurs during
the replication, some sort of fast decoding method is used to identify the
erroneously copied genes. Then, these genes are undergone another level of
internal error control which leads to determining the erroneous nucleotides.

However, the applications of coding theory in GRNs is not limited to
iterative decoding. Based on a recent work by Milenkovic and her team,

3] intentionally mentioned her name here since her areas of specialty and research inter-
ests are very close to what we are working on, both from a traditional coding theory view-
point (LDPC coding, coding for storage systems, etc.) and applications of coding and in-
formation theory in genetics. Here is her website: http://faculty.ece.illinois.edu/milenkov
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Figure 1: Gene network and its corresponding gene factor graph [4]

coding-theoretic methods can also be used to refine current models of GRNs.
Here, the main problem we are interested in is inferring the structure of a
GRNSs from biological findings. There are various approaches for this purpose
(for a brief survey see [4]). One of these methods is the probabilistic method
in which Bayesian networks are used to model the behavior of genes. In this
model, the directed interaction network is transformed into a bipartite factor
graph. In the factor graph, the set of left vertices represent the nodes in
the original network and the set of right nodes indicate the way the nodes
interact. For example, if there is an edge between the vertices L; and R; on
the left and right side, respectively, then gene V; affects gene Vj, i.e. if V; is
switched on, V; is switched on or off. This transformation is shown in figure
1. In the figure, the variables Y; represent the measured expression levels of
the genes and one can think of P(Y;|V;) as describing the unknown and
noisy measurement channel.

In [4], authors propose a coding-theoretic method to model the interac-
tions between genes. They assume that the interaction network is known
from biological findings, which is not a very limiting assumption, while the
interaction functions f;’s in equation (1) must be determined. They use poly-
nomial interpolation techniques in coding theory to determine f;’s. In their



approach, f; is related to the polynomials used in Redd Muller codes and
show that the same approach used in decoding of Redd-Muller codes could
be used here to determine f; if the number of observed biological data is
sufficient, i.e. it is bigger than a threshold which depends on the minimum
distance of RM codes.

Therefore, coding theory is used here to fully specify the parameters of
the GRN model. interestingly, their approach has the advantage that it
works in the noisy models in which the GRN is not a deterministic network
but a probabilistic model which correctly reflects the stochastic behavior
of biological phenomena. Furthermore, the data we use in our biological
analysis comes from DNA micro-arrays which scan the DNA of species. The
micro-array itself introduces some noise in the data as well.

4 Coding Theory for DNA Classification

Finding out the ancestors of current species and building the phylogentic
tree of life is a very important filed in bioinformatics. The main problem
here can be stated as follows: we would like to a build a tree in a way that
its leaves are current species. The one before last level, i.e. the parents of
these leaves, are the ancestors of common species. For example, monkey,
chimpanzee and humans probably have a common ancestor which be their
parent in the tree of life. This ancestor would be the parent node of these
leaves in the phylogenetic tree, and so on until we end up with the first living
species on earth as the root of the tree. Since most of these ancestors are
extinct now, we would like to construct this tree merely based on the genome
of current species.

There are a lot of algorithms for constructing the phylogenetic tree, all
of which are heuristics as the problem is NP-complete. Nevertheless, coding
theory can have a very nice application here if we model the evolution as
a communication channel in which an input (the ancestor of some
species) is transmitted via the noisy communication channel (evo-
lutionary time in this case). We have then sampled the outputs of
the channel at different times (different noise values) to get differ-
ent species. Our goal is to deduce the transmitted data based on
the received noisy channel output. A similar idea is mentioned in [3].
In this case, noise is mutations that occur in a genome of a species during
evolutionary time scales.



5 Conclusion

Based on the literature review so far, it seems that there are a lot of ev-
idence on existence of error correction schemes in DNA. Furthermore, no
contradictions were found between the hypothesis that natural genomic error-
correcting means exist and the properties of the living world. On the con-
trary, it seems to account for a number of facts, especially of evolution, that
conventional theories fail to explain. In addition, as discussed above, coding
theory could have many other applications in this field other than finding
ECC in DNA.

Nevertheless, in my opinion it is quite soon to conclude that ECC exists
in genome. Because all the phenomena that could be explained using cod-
ing theory could also be possibly justified by the help of other hypotheses.
Nevertheless, coding theory is a strong candidate here and requires a deeper
and more comprehensive study, which I will do in the following weeks.
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