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Abstract—We consider the problem of neural association for
a network of non-binary neurons. Here, the task is to first
memorize a set of given patterns using a network of neurons
whose states assume values from a finite number of non-negative
integer levels. Later, the same network should be able to recall a
previously memorized pattern from its noisy version. Prior works
in this area consider storing a finite number of purely random
patterns, and have shown that the pattern retrieval capacities
(maximum number of patterns that can be memorized) scale
only linearly with the number of neurons in the network.

In our formulation of the problem, we concentrate on exploit-
ing redundancy and internal structure of the patterns in order to
improve the pattern retrieval capacity. We show that if the given
patterns have a suitable structure, i.e. come from a sub-space of
the set of all possible patterns, we can have exponential pattern
retrieval capacities in terms of the length of the patterns. Another
example is when the patterns have strong minor components.
We will use this minor components (or the basis vectors of the
patterns null space) to both increase the pattern retrieval capacity
and error correction capabilities.

An iterative algorithm is proposed for the learning phase. In
addition, two simple neural update algorithms are presented for
the recall phase and using analytical results and simulations, we
show that the suggested methods can tolerate a fair amount of
errors in the input.

I. INTRODUCTION

Neural associative memory is a particular class of neural
memory capbale of memorizing (learning) a number of given
patterns and recall them later in presence of noise, i.e. retrieve
the correct memorized pattern from a given noisy version.
Since 1982 and due to the seminal work of Hopfield [4], var-
ious artificial neural networks have been designed to mimick
the task of the neural associative memory. See for instance
[13], [14], [10], [12], [18].

In essence, the neural associative memory is very similar
to the one faced in communication systems where the goal
is to reliably transmit and efficiently decode a set of patterns
(so called codewords) over a noisy channel. In both cases,
we have to learn a set of patterns (codebook), and retrieve
the correct one form a noisy version. More interestingly, the
techniques used to implement an artificial neural associative
memory looks very similar to some of the methods used in
codes on graphs to design reliable and efficient codes.

However, despite the similarity in the task and techniques
employed in both problems, there is a huge gap in terms

of another important criterion: the efficiency. Using binary
codewords of length n, all modern codes on graphs are capable
of reliably transmitting 2rn codewords of length n over a
noisy channel (and recover the transmitted codeword from the
corrupted received pattern), with 0 < r < 1 being the code
rate [20]. In many cases, one can also obtain the optimal r, i.e.
the largest possible value that permits the almost sure recovery
of transmitted codewords from the corrupted received version.

However, using current neural networks of size n to memo-
rize a set of randomly chosen patterns, the maximum number
of patterns that can be reliably memorized scales linearly in n
[11], [13]. In other words, a large body of the current works on
artifical neural associative memories concentrate on the ability
of the network to memorize any set of patterns, randomly
chosen from the pool of all possiblities, and being able to
retrieve the correct memorized pattern from a noisy version
(e.g., [4], [13], [14], [10]). Although this gives the network
a sense of generality, it severely limits its efficiency since in
many cases, it is possible to have two patterns that look very
similar to each other. Now distinguishing these two patterns
from a corrupted input version would be really difficult and
one has to limit the number of patterns that can be memorized
in order to maintain the reliability of the answers in the recall
phase. This is in sharp contrast to coding techniques where
one designs codewords such that they have the maximum
possible similarity distance from each other, i.e. the codewords
are selected such that they do not look like each other at all.
Furthermore, add the above issue to the simple nature neurons,
due to which they can only perform rather simple operations,
to conclude that most of the techniques used in coding theory
can not be implemented by neural networks.

Therefore, the above two reasons can be among the possible
explanation about the huge difference in the pattern retrieval
capacity of neural networks and that of coding techniques.

In this paper, we focus on increasing the pattern retrieval
capacity of neural associative memories. We propose a neural
network which is able to memorize and reliably recall an
exponential number of pattern with length n, if the patterns
come from a subspace with dimension k < n. In other
words, we show that if the patterns in the training set has
some interneal structure and redundancy, the proposed model
exploits this structure in order to increase the number of



patterns that can be memorized as well as eliminating noise
during the recall phase. In [2], we explained some preliminary
results in which two efficient recall algorithms were proposed
for the case where the neural graph was expander. Here, we
extend the previous results to general sparse neural graphs as
well as prposing a simple learning algorithm to capture the
internal strcutre of the patterns in order to be used later in the
recall phase.

The remainder of this paper is organized as follows: In
section II, we will discuss the neural model used in this paper
and formally define the problem. We explain the proposed
learning algorithm in section III. Section IV is dedicated to the
recall algorithm and analytically investiagting its performance
in retrieving corrupted patterns. In section V we address the
pattern retrieval capacity and show it can be exponential in n.
Simulation results are discussed in section VI. Finally, section
VII concludes the paper and discusses future research topics.

II. PROBLEM FORMULATION AND THE NEURAL MODEL

A. The Model

We choose to work with non-binary neurons, i.e. neurons
whose state is an integer from a finite set of integer values
S = {0, 1, . . . , S − 1}. A natural way of interpretting this
model is to think of the integer states as the short-term firing
rate of neurons. In otherwords, the state of a neuron in this
model indictaes the number of spikes fired by the neuron in a
fixed short time interval.

Like in other neural netoworks, neurons can do only simple
operations. We consider neurons that can do linear summation
over the input and possibly apply a non-linear function (such
as thresholding), to produce the output. More specifically,
neuron x updates its state based on the states of its neighbors
{si}ni=1 as follows:

1) It computes the weighted sum h =
∑n
i=1 wisi, where

wi denotes the weight of the input link from si.
2) It updates its state as x = f(h), where f : R → S

is a possibly non-linear function from the field of real
numbers R to S.

B. The Problem

We assume to be given C vectors of length n with integer-
valued entries belonging to S . In order to have a neural
associative memory with large pattern retrieval capacity, we
concentrate on learning the set of patterns that have some
internal structure. More specifically, we assume theese patterns
to come from a subspace with dimension k ≤ n. Note that if
k = n, then we are back to the original associative memory
addressed by Hopfield and others [4], [13], [14], [10], [12],
[18]. However, if k < n, we will end up with much larger
pattern retrieval capacities, as will be shown later.

We would like to memorize these patterns by finding a set
of non-zero vectors w1, . . . , wm ∈ Rn that are orthogonal to
the set of given patterns. Furthermore, we are interested in
rather sparse vectors. Denoting pattern µ by xµ and focusing
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Fig. 1. A bipartite graph that represents the constraints on the training set.

on one such vector w, we can formulate the problem as:

min

C∑
µ=1

|xµ · w|2 (1a)

subject to

‖w‖0 ≤ q (1b)

‖w‖22 ≥ ε (1c)

where · represents the inner-product, q ∈ N determines the
degree of sparsity and ε ∈ R+ prevents the all-zero solution.

By repeating the above problem for different vectors w,
we will have m = n − k sparse vectors who form the basis
for the null space of the patterns which would like to learn.
Therefore, the inherent structure of the patterns are captured
in the obtained null-basis, denoted by the matrix W ∈ Rm×n,
which can be interpretted as the adjacency matrix of a neural
graph. The overall network model is shown in Figure 1.

In the recall phase, the neural network should retrieve the
correct memorized pattern from a possibly corrupted version.
In this case, the states of the pattern neurons x1, x2, . . . , xn are
initialized with the given input pattern. Here, we assume that
the noise is integer valued and additive1. Therefore, assuming
the input to the network is a corrupted version of pattern xµ,
the state of the pattern nodes are x = xµ + z, where z is
the noise. Now the neural network should use the given states
together with the fact that Wxµ = 0 to retrieve the pattern
xµ. Any algorithm designed for this purpose should be simple
enough to be implemented by neurons. Therefore, we must
find a simple algorithm capable of eliminating noise using
only neural operation.

Before presenting our solution, we briefly overview the
literature and explain the relations between the previous works
and the presented approach in this paper.

1It must be mentioned that neural states below 0 and above S − 1 will be
set to 0 and S − 1, respectively.



C. Related Works

Designing a neural associative memory has been an active
field for the past three decades. Hopfield was the first to design
an artifical neural associative memory in his seminal work
back in 1982 [4]. The so-called Hopfield network is inspired
by Hebbian learning ]citehebb and is composed of binary-
valued (±1) neurons, which together are able to memorize a
certain number of patterns. The pattern retrieval capacity of
a Hopfield network of n neurons was derived later by Amit
et al. [6] and shown to be 0.13n, under vanishing bit error
probability requirement. Later, McEliece et al. proved that
the capacity of Hopfield networks under vanishing block error
probability requirement is O(n/ log(n)) [11].

While the connectivity graph of a Hopfield network is
a complete graph, Kmlos et al. [9] extended the work of
McEliece to sparse neural graphs. Their results are of partic-
ular interest as physiological data is also in favor of sparsely
interconnected neural networks. Komlos and Paturi have con-
sidered a network in which each neuron is connected to d
other neurons, i.e., a d-regular network. Assuming that the
network graph satisfies certain connectivity measures, they
prove that it is possible to store a linear number of random
patterns (in terms of d) with vanishing bit error probability
or C = O(d/ log n) random patterns with vanishing block
error probability. Furthermore, they show that in spite of the
capacity reduction, the error correction capability remains the
same as the network can still tolerate a number of errors linear
in n.

It is also known that the capacity of neural associative
memories could be enhanced if the patterns are sparse in the
sense that at any time instant many of the neurons are silent
[7]. However, even these schemes fail when required to correct
a fair amount of erroneous bits as the information retrieval is
not better compared to that of normal networks.

In addition to neural networks capable of learning patterns
gradually, in [13], the authors calculate the weight matrix
offline (as opposed to gradual learning) using the pseudo-
inverse rule [7] which in return help them improve the capacity
of a Hopfield network to n/2, under vanishing blok error
probability condition, while being able to correct one bit
of error in the recall phase. Although this was a significant
improvement to the n/ log(n) scaling of the pattern retrieval
capacity in [11], it comes at the price of much higher compu-
tational complexity and the lack of the ability to learn patterns
gradually online.

Extension of associative memories to non-binary neural
models has also been explored in the past. Hopfield addressed
the case of continuous neurons and showed that similar to
the binary case, neurons with states between −1 and 1 can
memorize a set of random patterns, albeit with less capacity
[5]. In [14] the authors investigated a multi-state complex-
valued neural associative memories for which the estimated
capacity is C < 0.15n. Under the same model but using a
different learning method, Muezzinoglu et al. [10] showed that
the capacity can be increased to C = n. However the complex-

ity of the weight computation mechanism is prohibitive. To
overcome this drawback, a Modified Gradient Descent learning
Rule (MGDR) was devised in [15], with similar results in
terms of capacity.

Given that even very complex offline learning methods can
not improve the capacity of binary or multi-sate Hopfield
networks, a line of recent work has made considerable efforts
to exploit the inherent structure of the patterns in order
to increase both capacity and error correction capabilities.
Such methods either make use of higher order correlations of
patterns or focus merely on those patterns that have some sort
of redundancy. As a result, they differ from previous methods
in which the network was deigned to be able to memorize
any random set of patterns. Pioneering this prospect, Berrou
and Gripon [18] achieved considerable improvements in the
pattern retrieval capacity of Hopfield networks, by utilizing
Walsh-Hadamard sequences. The only slight downside to
the proposed method is the use of a decoder based on the
winner-take-all approach which requires a separate neural
stage, increasing the complexity of the overall method. Using
low correlation sequences has also been considered in [12],
where the authors introduced two novel mechanisms of neural
association that employ binary neurons to memorize patterns
with low correlation properties. The network itself is very
similar to that of Hopfield, with a slightly modified weighting
rule. Therefore, similar to a Hopfield networ, the complexity
of the learning phase is small. However, the authors failed
to increase the pattern retrieval capacity beyond n and it was
shown that the pattern retrieval capacity of the proposed model
is C = n, while being able to correct a fair number of
erroneous input bits.

In contrast to the pairwise correlation of the Hopfield model
[4], Peretto et al. [17] deployed higher order neural models:
the state of the neurons not only depends on the state of their
neighbors, but also on the correlation among them. Under this
model, they showed that the storage capacity of a higher-order
Hopfield network can be improved to C = O(np−2), where p
is the degree of correlation considered. The main drawback
of this model is again the huge computational complexity
required in the learning phase, as one has to keep track of
O(np−2) neural links and their weights in the learning phase.

To address this difficulty while being able to capture higher-
order correlations, The present authors introduced a bipartite
neural graph inspired from iterative coding theory [2]. Under
the assumptions that the bipartite graph is known, sparse,
and expander, the proposed algorithm increased the pattern
retrieval capacity to C = O(an), for some a > 1, closing the
gap between the pattern retrieval capacities achieved in neural
networks and that of coding techniques. The main drawbacks
in the proposed approach were the lack of a learning algorithm
as well as the expansion assumption on the neural graph.. The
sparsity criterion on the other hand, as it was mentioned earlier,
is biologically more meaningful.

In this paper, we focus on extending the results described
in [2] in several directions: first, we will suggest a learning
algorithm, to find the neural connectivity matrix from the



patterns in the training set. Secondly, we provide an anlysis of
the proposed error correcting algorithm in the recall phase and
investigates its performance as a function of input noise and
network model. Finally, we discuss some variants of the error
correcting method which achieve better performance marks in
practice.

It worths mentioning that an extension of this approach to
a multi-level neural network is considered in [29]. There, the
novel structure enables better error correction. However, the
learning algorithm lacks the ability to learn the patterns one
by one and requires the patterns to be presented all at the
same time in the form of a big matrix. In contrats, the learning
algorithm proposed in this paper is capable of learning patterns
gradually as they are presented to the network one by one.

Another important point to note is that learning linear
constraints by a neural network is hardly a new topic as
one can learn a matrix orthogonal to a set of patterns in the
training set (i.e., Wxµ = 0) using simple neural learning rules
(we refer the interested readers to [3] and [16]). However, to
the best of our knowledge, finding such a matrix subject to
the sparsity constraints has not been investigated before. This
problem can also be regarded as an instance of compressed
sensing [21], in which the measurement matrix is given by
the big patterns matrix XC×n and the set of measurements
are the constraints we look to satisfy, denoted by the tall
vector b, which for simplicity reasons we assume to be all
zero. Thus, we are interested in finding a sparse vector w
such that Xw = 0. Nevertheless, many decoders proposed
in this area are very complicated and cannot be implemented
by a neural network using simple neuron operations. Some
exceptions are [1] and [19] which are closely related to the
learning algorithm proposed in this paper.

III. LEARNING PHASE

Since the patterns are assumed to be coming from a sub-
space in the n-dimensional space, we adapt the algorithm
proposed by Oja and Karhunen [28] to learn the null-space
basis of the subspace defined by the patterns. In fact, a very
similar algorithm is also used in [3] for the same purpose.
However, since we need the basis vectors to be sparse (due
to requirements of the algorithm used in the recall phase), we
add an additional term to make the final result of the learning
algorithm rather sparse.

Another difference with the proposed method and that of
[3] is that in [3] the authors design their method such that the
resulted dual vectors form an orthogonal set. Although one can
easily extend our suggested method to such a case as well, we
find this requirement unnecessary in our case. This gives us
the additional advantage to make the algorithm parallel and
adaptive. Parallel in the sense that we can design an algorithm
to learn one constraint and repeat it several times in order to
find all of the constraints with high probability. And adaptive
in the sense that we can determine the number of constraints
on-the-go, i.e. start by learning just a few constraints. If needed
(for instance due to bad performance in the recall phase),
one can easily identify additional constraints. This increases

the flexibility of the algorithm and provides a nice trade-off
between the time spent on learning and the performance in the
recall phase.

A. Overview of the proposed algorithm

In order to develop a simple iterative algorithm, we formu-
late the problem in an optimization framework. The problem
to find a constraint vector w is given by equation (1). However,
instead of tackling problem (1) directly, we make a slight
modification and consider the following optimization problem:

min

C∑
µ=1

|xµ · w|2 + βg(w). (2a)

subject to:
‖w‖2 = 1 (2b)

In the above problem, we have replaced the constraint ‖w‖0 ≤
q with a penalty function g(w) since ‖.‖0 is not easy to handle
analytically. The function g(w) is chosen such that it favors
sparsity. For instance one can pick g(w) to be ‖.‖1, which
leads to `1-norm penalty and is widely used in compressed
sensing applications [1], [19]. In this paper, we consider the
function

g(w) =

n∑
i=1

tanh(σw2
i )

where σ is chosen appropriately. Intuitively, tanh(σw2
i ) ap-

proximates |sgn(wi)| in `0-norm. Thereforem, the larger σ is,
the closer g(w) will be to ‖.‖0. By calculating the derivative
of the objective function, and by considering the update due
to each randomly picked pattern xµ, we will get the following
iterative algorithm:

y(t) = x(t) · w(t) (3a)

w̃(t+ 1) = w(t)− αt (y(t)x(t) + βΓ(w(t))) (3b)

w(t+ 1) =
w̃(t+ 1)

‖w̃(t+ 1)‖
(3c)

In the above equations, t is the iteration index, x(t) is the
sample pattern chosen at iteration t uniformly at random from
the patterns in the training set X , and αt is a small positive
constant. Finally, Γ(w) : Rn → Rn = ∇g(w) is the gradient
of the penalty term for non-sparse solutions.

Remark 1. The ith entry of the function Γ(w(t))) =
∇g(w(t)) was driven to be fi(w(t)) = ∂g(w(t))/∂wi(t) =
2σtwi(t)(1−tanh2(σtwi(t)

2)). This function has the interest-
ing property that for very small values of wi(t), fi(w(t)) '
2σtwi(t) and for relatively larger values of wi(t), we get
fi(w(t)) ' 0. Therefore, by proper choice of β, equation (3b)
suppresses small entries of w(t) by pushing them towards zero.
In other words, this function favors sparser results.

Following the same approach as [28] and assuming αt to
be small enough such that equation (3c) can be expanded as



Algorithm 1 Iterative Learning
Input: Set of patterns xµ ∈ X with µ = 1, . . . , C, stopping

point ε.
Output: w

while
∑
µ |xµ · w(t)|2 > ε do

Choose x(t) at random from patterns in X
Compute y(t) = x(t) · w(t)
Update w(t + 1) = w(t) −
αty(t)

(
x(t)− y(t)w(t)

‖w(t)‖2 + βΓ(w(t))t))
)

.
t← t+ 1.

end while

powers of αt. In this case, we can approximate the algorithm
(3) with the following simpler version:

y(t) = x(t) · w(t) (4a)

w(t+1) = w(t)−αt
(
y(t)

(
x(t)− y(t)w(t)

‖w(t)‖2

)
+ βΓ(w(t))

)
(4b)

In the above apprixmation, we also omitted the term
alphatβ (w(t) · Γ(w(t)))w(t) since w(t) · Γ(w(t)) '
‖Γ(w(t))‖2 and ‖Γ(w(t))‖2 tends to zero as σt grows with
t. In words, y(t) is the projection of x(t) on the basis vector
w(t). If for a given data vector x(t), y(t) is equal to zero,
namely, the data is orthogonal to the current weight vector
w(t), then according to equation (4b) the weight vector will
not be updated. However, if the data vector x(t) has some
projection over w(t) then the weight vector is updated towards
the direction to reduce this projection. The overall learning
algorithm for one constraint node is given by algorithm 1.

Since we are interested in finding m basis vectors, we have
to do the above procedure m times in parallel.

Remark 2. Although we are interested in finding a sparse
graph, note that too much sparseness is not desired. Because
we are going to use the feedback sent by the constraint nodes
to eliminate input noise at pattern nodes. Now if the graph is
too sparse, the number of feedbacks received by each pattern
node is too small to be reliable. Therefore, we must adjust the
penalty coefficient β such that resulting neural graph is rather
small. In the section on experimental results, we compare the
error correction performance for different choices of β.

B. Convergence analysis

In order to prove that the algorithm 1 converges to the proper
solution, we use results from statistical learning. More specif-
ically, we benefit from the convergence of Stochastic Gradient
Descent (SGD) algorithms [25]. To prove the convergence, let
E(w) =

∑
µ |xµ · w|2 be the cost function. Furthermore, let

A = E{xTx} be the corelation patterns for the patterns in the
training set. Therefore, due to uniformity assumption for the
patterns in the training set, one can rewrite E(w) = wTAw,
where we have omitted the normalizing 1/C constant for
simplicity. finally, denote Aµ = xmu(xµ)T . Now consider
the following assumptions:

A1. ‖A‖2 ≤ Υ <∞ and supµ ‖Aµ‖2 = ‖xµ‖2 ≤ ζ <∞.
A2. αt ≥ 0,

∑
αt =∞ and

∑
α2
t <∞.

The following lemma porves the convergence of the learning
algorithm 1 to a local minimum w∗.

Lemma 1. Let assumption A1 and A2 above hold. Then,
the algorithm 1 converges to a local minimum for which
∇C(w) = 0.

Proof: To prove the lemma, we use the convergence
results in [25] and show that the necessary assumptions for
the convergence holds for the proposed algorithm. To start,
assumption (i) holds trivialy as the cost function is three-
times differetiable, with continuous derivatives. Furthermore,
C(w) ≥ 0. Assumption (ii) holds becaue of our choice of the
step size αt, as mentionned in the lemma description.

Assumption (iii) ensures that the vector w could not excape
by becoming larger and larger. Due to the constraint ‖w‖ = 1,
this assumption holds as well. Assumption (iv) holds as well
because:

Eµ (2Aµw + βΓ(w))
2

= 4wTEµ(A2
µ)w + β2‖Γ(w)‖2 + 4βwTEµ(Aµ)Γ(w)

≤ 4‖w‖2ζ2 + β2‖w‖2 + 4βΥ‖w‖2

= ‖w‖2(4ζ2 + 4βΥ + β2) (5)

Finally, assumption (v) holds because:

‖2Aµw + βΓ(w)‖2 = 4wTA2
µw + β2‖Γ(w)‖2 + 4βwTAµΓ(w)

≤ ‖w‖2(4ζ2 + 4βζ + β2) (6)

Therefore, ∃E > D such that as long as |w‖2 < E:

sup
‖w‖2<E

‖2Aµw + βΓ(w)‖2 ≤ E(2ζ + β)2 = constant (7)

Since all necessary assumptions hold for the learning algo-
rithm 1, it converges to a local minimum where ∇C(w) = 0.

Next, we prove the desired result, i.e. the fact that in the
local minimum, the resulting weight vector is orthogonal to
the patterns, i.e. Aw = 0.

Theorem 2. In the local minimum where ∇C(w∗) = 0, the
optimal vector w∗ is orthogonal to the patterns in the training
set, i.e. Aw∗ = 0.

Proof: Since ∇C(w∗) = 2Aw∗+ βΓ(w∗) = 0, we have:

w∗ · ∇C(w∗) = 2(w∗)TAw∗ + βw∗ · Γ(w∗) (8)

The first term is always greater than or equal to zero. Now
as for the second term, we have that |Γ(wi)| ≤ |wi| and
sgn(wi) = sgn(Γ(wi), where wi is the ith entry of w.
Therefore, 0 ≤ w∗ · Γ(w∗) ≤ ‖w∗‖2. Therefore, both terms
on the ritgh hand side of (8) are greater than or equal to zero.
And since the left hand side is known to be equal to zero, we
conclude that (w∗)TAw∗ = 0 and Γ(w∗) = 0. The former
means (w∗)TAw∗ =

∑
µ(w∗ · xµ)2 = 0. Therefore, we must

have w∗ · xµ = 0, for all µ = 1, . . . , C. Which simply means
the vector w∗ is orthogonal to all the patterns in the training
set.



Remark 3. Note that the above theorem only proves that
the obtained vector is orthogonal to the data set and says
nothing about its degree of sparsity. The reason is that there
is no guarantee that the dual basis of a subspace be sparse.
The introduction of the penalty function g(w) in problem (4a)
only encourages sparsity by suppressing the small entries of
w, i.e. shifting them towards zero if they are really small or
leavin them intact if they are rather large. And from the fact
that Γ(w∗) = 0, we know this is true as the entries in w∗

are either large or zero, i.e. there are no small entries. Our
experimental results in section VI show that in fact this strategy
works perfectly and the learning algorithm results in sparse
solutions.

C. Avoding the all-zero solution

Although in problem (2) we have the constraint ‖w‖2 =
1 to make sure that the algorithm does not converge to the
trivial solution w = 0, due to approximations we made when
developing the optimization algorithm, we should make sure
to choose the parameters such that the all-zero solution is still
avoided.

To this end, denote w′(t) = w(t) − αty(t)(x(t) − y(t)w(t)
‖w(t)‖2

and consider the following inequalities:

‖w(t)‖2 = ‖w(t)− αty(t)(x(t)− y(t)w(t)

‖w(t)‖2
− αtβΓ(w(t))‖2

= ‖w′(t)‖2 + α2
tβ

2‖Γ(w(t))‖2 − 2αtβΓT (w(t))w′(t)

≥ ‖w′(t)‖2 − 2αtβΓT (w(t))w′(t)

(9)

Now in order to have ‖w(t)‖2 > 0, we must
have that 2αtβ|Γ(w(t))Tw′(t)| ≤ ‖w′(t)‖2. Given that,
|ΓT (w(t))w′(t)| ≤ ‖w′(t)‖‖Γ(w(t))‖, it is therefore sufficient
to have 2αtβ‖Γ(w(t))‖ ≤ ‖w′(t)‖. On the other hand, we
have:

‖w′(t)‖2 = ‖w(t)‖2 + α2
t y(t)2‖x(t)− y(t)w(t)

‖w(t)‖2
‖2

≥ ‖w(t)‖2 (10)

As a result, in order to have ‖w(t)‖2 ≥ 0, it is sufficient
to have 2βt‖Γ(w(t))‖ ≤ ‖w(t)‖. Finally, since we have
Γ(w(t)) ≤ w(t) (entriewise), we know that ‖Γ(w(t))‖ ≤
‖w(t)‖. Therefore, having 2αtβ < 1 ≤ ‖w(t)‖/‖Γ(w(t))‖
ensures ‖w(t)‖ > 0.

Remark 4. Interestingly, the above choice for the function
Γ(w) looks very similar to the soft thresholding function
(11) by [1] to perform iterative compressed sensing. The
authors show that their choice of the sparsity function is very
competetive in the sense that one can not get much better
results by choosing other thresholding functions. However, one
main difference between their work and that of ours is that
we enforce the sparsity as a penalty in equation (3b) while
they apply the soft thresholding function in equation (11) to
the whole w, i.e. if the updated value of w is larger than a

threshold, it is left intact while it will be put to zero otherwise.

ηt(x) =

 x− θt if x > θt;
x+ θt if x < −θt
0 otherwise.

(11)

where θt is the threshold at iteration t.

D. Making the Algorithm Parallel

In order to find m constraints, we need to repeat algorithm
1 m times. Fortunately, we can repeat this process in parallel,
which speeds up the algorithm and is more meaningful from
a biological point of view as each constraint neuron can
act independently of other neighbors. Although doing the
algorithm in parallel may result in redundant constraints once
in a while, our experimental results show that starting from
different random initial points, the algorithm converges to
different distinct constraints most of the time. Besides, as long
as we have enough distinct constraints, the recall algorithm in
the next section works just fine and there is no need to learn all
the distinct basis vectors of null space defined by the training
patterns. Therefore, we will use the parallel version to have a
faster algorithm in the end.

IV. RECALL PHASE

In the recall phase, we are going to exploit the facts that
the connectivity matrix of the neural graph is sparse and
orthogonal to the memorized patterns. Therefore, given a noisy
version of the learned patterns, we can use the feedback at
the constraint neurons in Fig. 1 to eliminate noise. More
specifically, the linear input sum to the constraint neurons is
given by the vector W ·(xµ+z) = W ·xµ+W ·z = W ·z, with
z being the integer-valued input noise (biologically speaking,
the noise can be interpreted as a neuron skipping some spikes
or firing more spikes than it should). We will use sparsity of
the neural graph to eliminate z iteratively, as explained in the
following.

A. The Recall Algorithms

The proposed algorithm for the recall phase comprises
a series of forward and backward iterations. Two different
methods are suggested in this paper, which slightly differ
from each other in the way pattern neurons are updated. The
first one is based on the Winner-Take-All approach (WTA)
and is given by algorithm 2. In this version, only the pattern
node that receives the highest amount of feedback updates its
state while the other pattern neurons maintain their current
states. The winner-take-all circuitry can be easily added to the
neural model shown in Figure 1 using any of the classic WTA
methods [7].

The second approach, given by algorithm 3, is much simpler
and in every iteration, each pattern neuron decides locally to
update its current state or not. More specifically, if the amount
of feedback received by a pattern neuron exceeds a threshold,
the neuron updates its state and remain intact otherwise.

2Note that in practice, we replace the condition hi = 0 and hi > 0 with
|hi| < ε and hi > ε for some small positive number ε.



Algorithm 2 Recall Algorithm: Winner-Take-All
Input: Connectivity matrix W , iteration tmax

Output: x1, x2, . . . , xn
1: for t = 1→ tmax do
2: Forward iteration: Calculate the weighted input sum

hi =
∑n
j=1Wijxj , for each constraint neuron yi and

set:

yi =

 1, hi < 0
0, hi = 0
−1, otherwise2

.

3: Backward iteration: Each neuron xjnwith degree dj
computes

gj =

∑m
i=1Wijyi
dj

.

4: Find
j∗ = arg max

j
|gj |.

5: Update the state of winner j∗: If gj∗ 6= 0, then set
xj∗ = xj∗ + sign(gj∗).

6: t← t+ 1
7: end for

Algorithm 3 Recall Algorithm: Bit-Flipping
Input: Connectivity matrix W , threshold ϕ, iteration tmax

Output: x1, x2, . . . , xn
1: for t = 1→ tmax do
2: Forward iteration: Calculate the weighted input sum

hi =
∑n
j=1Wijxj , for each neuron yi and set:

yi =

 1, hi < 0
0, hi = 0
−1, otherwise2

.

3: Backward iteration: Each neuron xj with degree dj
computes

gj =

∑m
i=1Wijyi
dj

.

4: Update the state of each pattern neuron j according to
xj = xj + sgn(gj) only if |gj | > ϕ.

5: t← t+ 1
6: end for

It is worthwile to mention that the bif-flipping algorithm
is very similar to the bit-flipping algorithm of Sipser and
Spielman [24] and a similar approach in [23] for compressive
sensing methods.

Remark 5. To give the reader some insight about why
the neural graph should be sparse in order for the above
algorithms to work, consider the backward iteration of both
algorithms: they are based on counting the fraction of received
input feedbacks from the neighbors of a pattern node. In the

extreme case, if the neural graph is complete, then a single
noisy pattern node results in the violation of all constraint
nodes in the forward iteration. As a result, in the backward
iteration all the pattern nodes receive feedback from their
neighbors and it is impossible to tell which of the pattern
nodes is the noisy one.

However, if the graph is sparse, a single noisy pattern node
only makes some of the constraints unsatisfied. Consequently,
in the recall phase only the nodes which share the neigh-
borhood of the noisy node receive input feedbacks. And the
fraction of the received feedbacks would be much larger for
the original noisy node. Therefore, by merely looking at the
fraction of received feedback from the constraint nodes, one
can identify the noisy pattern nodes with high probability as
long as the graph is sparse and input noise is fairly bounded.

B. Performance analysis

In order to find out anaytical estimations on the recall
probability of error as a function of input noise, we assume the
connectivity graph W to be sparse. If W is also an expander-
graph, we get better performance guarantees. However, finding
an expander graph by means of an iterative learning method,
assuming its existence, is very difficult. Therefore, in this
section we limit ourselves to the case of sparse graphs and
the analysis for the expander graphs can be found in appendix
B and in [2].

To start the analysis, we consider an ensemble of random
neural graphs with a given right-degree distribution and in-
vestigate the average error peformance. In other words, W
is assumed to be randomly constructed in the sense that in
each construction round, a pattern node is selected and based
on its degree, it connects randomly to constraint nodes. The
degree-distribution is determined by the result of the learning
algorithm so we do not aim to optimize the degree distribution
here to get a better error performance.

Finally, we assume that the errors do not cancel each
other out in the constraint nodes. This is in fact a realistic
assumption because the neural graph is weighted, with weights
belonging to the real field, and the noise values are integers.

Now we take the following steps in order to bound the
probability of making an error in one iteration for the bit-
flipping algorithm:

1) We start by dividing the errors in two types: a correct
node updates itself mistakenly (Pe1 ) and a noisy node
update itself in the wrong direction (Pe2 ).

2) We find an explicit relationship for the average of Pe1
over all nodes as a function of the number of constraint
neurons affected by the noisy pattern nodes.

3) We then find an upper bound on the average of Pe2 as
a function of the number of constraints affected by the
noisy pattern nodes.

4) Having found the average bit error probability, we
can estimate the block error probability for the recall
algorithm.

Note that if we choose the bit-flipping update threshold ϕ = 1,



roughly speaking, we will have the winner-take-all algorithm.2

Therefore, it is sufficient to analyze the bit-flipping method.
Let Et denote the set of erroneous pattern nodes at iteration

t, and N (Et) be the set of constraint nodes that are connected
to the nodes in Et, i.e. these are the constraint nodes that have
at least one neighbor in Et. In addition, let N c(Et) denote the
other constraint nodes that do not have any connection to any
node in Et. Finally, Let Ct be the set of correct pattern nodes.

Based on the error correcting algorithm and the above
notations, at a given iteration two types of error are possible:

1) A node x ∈ Ct decides to update its value. The
probability of this phenomenon is denoted by Pe1 .

2) A node x ∈ Et updates its value in the wrong direction.
Let Pe2 denote the probability of error for this type.

1) Error probability - type 1: To begin, let P x1 be the
probability that a node x ∈ Ct with degree dx makes a correct
decision and does not updates its state. We have:

P x1 = Pr{ |N (Et) ∩N (x)|
dx

< ϕ} (12)

where N (x) is the neighborhood of x. Assuming random
construction of the graph and relatively large graph sizes, one
can approximate P x1 by

P x1 =

dϕdxe−1∑
i=0

(
dx
i

)(
St
m

)i(
1− St

m

)dx−i
(13)

Where St = E(|N (Et)|) is the average neighborhood size of
Et.

As a result of the above equations, we have:

Pe1 = 1− Edx(P x1 ) (14)

2) Error probability - type 2: A node x ∈ Et makes a
wrong decision if the net input sum it receives has a different
sign than the sign of noise it experiences. Instead of finding
an exact relation, we bound this probability by the probability
that the neuron x shares at least half of its neighbors with
other neurons, i.e. Pe2 ≤ Pr{ |N (E∗t)∩N (x)|

dx
≥ 1/2}, where

E∗t = E∗t \ x. Letting P x2 = 1 − Pr{ |N (E∗t)∩N (x)|
dx

≥ 1/2},
we will have:

P x2 =

bdx/2c∑
i=0

(
dx
i

)(
St
m

)i(
1− St

m

)dx−i
(15)

Therefore, we will have:

Pe2 ≤ 1− Edx(P x2 ) (16)

2It must be mentionned that choosing ϕ = 1 does not yield the WTA
algorithm exactly because in the original WTA, only one node is updated
in each round. However, in this version with ϕ = 1, all nodes that receive
feedback from all their neighbors are updated. Nevertheless, the performance
of the both algorithms is rather similar.

Combining equations (14) and (14), the symbol error prob-
ability at iteration would be

Pb(t) = Pr{x ∈ Ct}Pe1 + Pr{x ∈ Et}Pe2

=
n− |Et|

n
Pe1 +

|Et|
n
Pe2

= 1− n− |Et|
n

P̄ x1 −
|Et|
n
P̄ x2 (17)

where P̄ xi = Edx{P xi }.
And finally, the average block error rate is given by the

probability of at least one pattern node x makes a mistake.
Therefore:

Pe(t) = 1− (1− Pb(t))n (18)

Equation (18) gives the probability of making a mistake in
iteration t. Therefore, we can bound the overall probability of
error as

PE ≤ Pe(0) (19)

In other words, if we made a mistake in the first round, we
assume everything will go wrong till the end. Obviously, this is
not necessarily true and in practice one might do much better.
In fact simulation results confirm this conjecture. However,
as the initial number of noisy nodes grow, the abouve bound
becomes tight.

Using the following lemma we will have the average neigh-
borhood size which is widely used in deriving the probabilities
of error above.

Lemma 3. The average neighborhood size St in iteration t
is given by:

St = m

(
1− (1− d̄

m
)|mcEt|

)
(20)

Proof: The proof is given in appendix C.

Remark 6. Although the randomness assumption may not
be correct due to the fact that the resulting graphs may not
correspond to the dual subspace of the given training set,
over all ensembles of random training sets this assumption
might hold. Our simulation results in the following confirm this
assumption as well. Nevertheless, for a particular realization
of the neural graph, one might do better or worse than
average.

C. Some Practical Modifications

D. Simultaneous Learn and Recall

So far, the algorithm yields a sparse matrix which satisfies
the set of linear equations Wx = 0, for all vectors x in
the training data set. However, since we have to go over an
exponentially many such vectors (and for each vector update
m vectors of length n), the whole learning process is extremely
slow even for rather small values of k. Therefore, instead of
going over all possible patterns in the subspace, we pick a
portion of them at random, perform the learning phase and
when finished, go directly to the recall phase.

Now during the recall phase, two cases may occur: either
we are given a noisy version of a pattern we have memorized



before, or we will have a noisy version of a new pattern. One
can distinguish these two cases based on the values returned
by constraint nodes. In the former case, the deviation from the
desired constraint values is rather small if the amount of input
noise is limited to some extent. Therefore, we can carry on
with the usual error correcting algorithm in the recall phase.

In the latter case, where we are given a noisy version of
a new pattern, the deviation from the constraints are usually
high, indicating the existence of a pattern not learned before.
In this case, we perform a learning phase. Note that since
the pattern we are learning is usually noisy, we might have
to repeat this process several times for a pattern to cancel out
learning noise. Obviously, there is a trade off between accuracy
and speed here, but this scenario makes sense biologically as
well. Because we do not learn everything at once but rather
do the process in a gradual manner. In the next section, we
compare this approach with the traditional training in terms of
speed and recall performance.

V. PATTERN RETRIEVAL CAPACITY

It is interesting to see that the number of patterns C does
not have any effect in the learning or recall algorithm. Becuase
as long as the patterns come from a subspace, the learning
algorithm will yield a matrix which is orthogonal to all of the
patterns in the training set. And in the recall phase, all we deal
with is Wz, with z being the noise which is independent of
the patterns.

Therefore, in order to show that the pattern retrieval capacity
is exponential with n, all we need to show is that there exists
a valid training set X with C patterns of length n for which
C ∝ an, for some a > 1. By valid we mean the patterns
should come from a subspace with dimension k < n and the
entries in the patterns should be non-negative integers. The
next theorem proves the required result.

Theorem 4. Let X be a C × n matrix which comprise of C
vectors of length n with non-negativ integers entries between
0 and S − 1. Then, there exists an X for which C =∝ an,
with a > 1, such that rank(X ) = k < n.

Proof: The proof is based on construction: we construct
a data set X with the required properties. To start, consider
a matrix G ∈ Rk×n with rank k = n. Assume k = rn, with
0 < r < 1. Let the entries of G be non-negative integers,
between 0 and γ − 1. We start constructing the patterns in
the data set as follows: consider a random vector uµ ∈ Rk
with integer-valued-entries between 0 and υ − 1. We set the
pattern xµ ∈ X to be xµ = uµ ·G, if all the entries of xµ are
between 0 and S − 1. Obviously, since both uµ and G have
only non-negative entries, all entries in xµ are non-negative.
Therefore, it is the S − 1 upper bound that we have to worry
about.

The jth entry in xµ is equal to xµj = uµ · gj , where gj is
the jth column of G. Suppose gj has dj non-zero elements.
Then, we have:

xµj = uµ · gj ≤ dj(γ − 1)(υ − 1)

Therefore, denoting d∗ = max jdj , we could choose γ, υ
and d∗ such that

S − 1 ≥ d∗(γ − 1)(υ − 1) (21)

to ensure all entries of xµ are less than S. In this case, we will
have υk = υrn patterns belonging to X . Therefroe, C ≥ υrn,
which would be an exponential number in n for υ ≥ 2.

As an example, if G is slected to be a sparse 200 × 400
matrix with 0/1 entries (i.e. γ = 2) and d∗ = 10, and u is
also chosen to be a vector with 0/1 elements (i.e. υ = 2), then
it is sufficient to have S ≥ 11, i.e. the maximum firing rate of
neurons should be 11 to have a pattern retrieval capacoty of
C = 2rn.

Remark 7. Note that the inequality (21) was obtainef for the
worst-case scenario and in fact is very loose. Therefore, even if
it does not hold, we will still be able to memorize a very large
number of patterns since a big portion of the generated vectors
xµ will have entries less than S. These vectors correspond the
message vectors uµ who are ”sparse” as well, i.e. do not have
all entries greater than zero. The number of such vectors is a
polynomial in n, the degree of which depends on the number
of non-zero entries in uµ.

VI. SIMULATION RESULTS

A. Simulation Scenario

We have simultaed the proposed learning and recall algo-
rithms for three different network sizes n = 100, 200, 400,
with k = n/2 for all cases. For each case, we considered
three different set-ups with different values for β and θ in the
learning algorithm 1, and different ϕ for the bit-flipping recall
algorithm 3.

In all cases, we generated 50 training set at random using the
approach explained in the proof of theorem 4, i.e. we generated
a generator matrix G at random with 0/1 entries and d∗ = 10
(??? verify!). We also used 0/1 generating message words u
and put S = 11 to ensure the validity of the generated training
set.

However, since in this setup we will have 2n patterns to
memorize, doing a simulation over all of them would take
forever. Therefore, we have selected a random sample sub-set
X each time with size C = 105 for each of the 50 generated
sets and used this subset as the training set.

For each set-up, we performed the learning algorithm over
these 50 instances, and the investigated the average sparsity
of the learned constraints over the ensemble of 50 instance.
As explained earlier, all the constraints for each network were
learned in parallel, i.e. to obtain m = n − k constraints, we
eecuted algorithm 1 from random initial points each time.

As for the recall algorithms, the error correcting perfor-
mance was assessed for each set-up, avraged over the 50
ensebles. The emprical results are compared to the threotical
bounds derived in section IV-B as well.

The recall algorithm is first executed just over the patterns in
the training set, i.e. the patterns that already have been learned,
to assess the true error correction performance of the algorithm



and compare it with the theoretical bounds. Afterwards, and
to investigate the performance of the simultaneous learn and
recall scenario, explained in section IV-C, the recall algorithm
is executed over not just the training set but over all of the
possible 2n patterns. In this case, in response to a noisy pattern
if the network decides it has learned the pattern before, it
attempts to eliminate the noise. Otherwise, it tries to learn the
pattern and will not do error correction. The performance of
these two cases are compared to each other as well.

B. Learning Phase Results

In the learning algorithm, we pick each pattern from the
training set and adjust the weights accoringly. Once we have
gone over all the patterns, we repeat this operation again
several times to make sure that update for one pattern does
not adversly affect the other learned patterns. Let t denote the
number of times we go over the patterns in the training set.
Then we set αt ∝ 1/t to ensure the conditions of theorem 1
is satisfied. Interestingly, all of the constraints converged in at
most two learning iterations for all different set-ups. Therefore,
the learning is very fast in this case.

Figure 2 illustrates the percentage of variable nodes with
the specified sparsity measure defined as ρ = κ/n, where κ is
the number of non-zero elements. From the figure one notices
that as n increases, the weight vectors become sparser.

Fig. 2. The percentage of variable nodes with the specified sparsity measure
and different values of network sizes. The sparsity measure is defined as
ρ = κ/n, where κ is the number of non-zero elements.

C. Recall Phase Results

For the recall phase, in each trial we pick a pattern randomly
from the training set, corrupt a given number of its symbols
with ±1 noise and use the suggested algorithm to correct the
errors. A pattern error is declared if the output does not match
the correct pattern.

Figure 3 illustrates the pattern error rates for different
network sizes. Note that the results are in close match with
the theoretical upper bound derived in section IV-B. Note
that since we stop the learning after 99% of the patterns had
learned, it is natural to see some recall errors even for 1 initial
erroneous node.

Figure 4 shows the recall error rates for different network
sizes. Note that a recall error is declared if the network decides

Fig. 3. Pattern error rate against the initial number of erroneous nodes and
comparison with theoretical upper bounds

that it has learned the given pattern before and makes an
attempt to correct the errors but fails to succeed.

Fig. 4. Pattern error rate against the initial number of erroneous nodes and
comparison with theoretical upper bounds

If the network mistakes between an already learned pattern
and a new one, a learning decision error is declared. Table
VI-C indicates the fraction of incorrect learning decisions
(both false positives and false negatives) of the algorithm.

TABLE I
SIMULATION PARAMETERS

Parameter ϕ tmax ε
Value 0.8 20‖z‖0 0.01

VII. FUTURE WORKS

In order to extend the multi-level neural network, we must
first find a way to generate patterns that belong to a subspace
with dimensions nL − mg , where mg lies within the inside
of bounds L(n − k) < mg < nL − k. This will give us a
way to investigate the trade off between the maximum number
of memorizable patterns and the degree of error correction
possible.

Furthermore, so far we have assumed that the second level
enforces constraints in the same space. However, it is possible
that the second level imposes a set of constraints in a totally
different space. For this purpose, we need a mapping from one



space into another. A good example is the written language.
While they are local constraints on the spelling of the words,
there are some constraints enforced by the grammar or the
overall meaning of a sentence. The latter constraints are not
on the space of letters but rather the space of grammar or
meaning. Therefore, in order to for instance to correct an error
in the word at, we can replace with either W , to get hat,
or c to get cat. Without any other clue, we can not find the
correct answer. However, let’s say say we have the sentence
”The at ran away”. Then from the constraints in the space
of meaning we know that the subject must be an animal or
a person. Therefore, we can return cat as the correct answer.
Finding a proper mapping is the subject of our future work.
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APPENDIX A
EXPANDER GRAPHS

This section contains the definitions and the necessary
background on expander graphs.

Definition 1. A regular (dp, dc, n,m) bipartite graph W is a
bipartite graph between n pattern nodes of degree dp and m
constraint nodes of degree dc.

Definition 2. An (αn, βdp)-expander is a (dp, dc, n,m) bipar-
tite graph such that for any subset P of pattern nodes with
|P| < αn we have |N (P)| > βdp|P| where N (P) is the set
of neighbors of P among the constraint nodes.

The following result from [24] shows the existence of
families of expander graphs with parameter values that are
relevant to us.

Theorem 5. [24] Let W be a randomly chosen
(dp, dc)−regular bipartite graph between n dp−regular ver-
tices and m = (dp/dc) dc−regular vertices. Then for all
0 < α < 1, with high probability, all sets of αn dp−regular
vertices in W have at least

n

(
dp
dc

(1− (1− α)dc)−

√
2dcαh(α)

log2 e

)
neighbors, where h(·) is the binary entropy function.

The following result from [26] shows the existence of
families of expander graphs with parameter values that are
relevant to us.

Theorem 6. Let dc, dp, m, n be integers, and let β < 1−1/dp.
There exists a small α > 0 such that if W is a (dp, dc, n,m)
bipartite graph chosen uniformly at random from the ensemble
of such bipartite graphs, then W is an (αn, βdp)-expander
with probability 1− o(1), where o(1) is a term going to zero
as n goes to infinity.

APPENDIX B
ANALYSIS OF THE RECALL ALGORITHMS FOR EXPANDER

GRAPHS

A. Analysis of the Winner-Take-All Algorithm

We prove the error correction capability of the winner-take-
all algorithm in two steps: first we show that in each iteration,
only pattern neurons that are corrupted by noise will be chosen
by the winner-take-all strategy to update their state. Then,
we prove that the update is in the right direction, i.e. toward
removing noise from the neurons.

Lemma 8. If the constraint matrix W is an (αn, βdp)
expander and the original number of erroneous neurons are
less than emin = b β

1−β c, then in each iteration of the winner-
take-all algorithm only the corrupted pattern nodes update
their value and the other nodes remain intact. For β = 3/4,
the algorithm will always pick the correct node if we have two
or fewer erroneous nodes.

Proof: For simplicity, we restrict our attention to the
case β = 3/4. If we have only one node xi in error, it is
obvious that the corresponding node will always be the winner
of the winner-take-all algorithm unless there exists another
node that has the same set of neighbors as xi. However,
this is impossible as because of the expansion properties, the
neighborhood of these two nodes must have at least 2βdp
members which for β = 3/4 is equal to 3dp/2. As a result,
no two nodes can have the same neighborhood and the winner
will always be the correct node.

In the case where there are two erroneous nodes, say
xi and xj , let Q be the set {xi, xj} and N (Q) be the
corresponding neighborhood on the constraint nodes side.
Furthermore, assume xi and xj share dp′ of their neighbors
so that |N (Q)| = 2dp − dp′ . First of all note that because of
the expansion properties and for β = 3/4:

|N (Q)| = 2dp − dp′ > 2βdp ⇒ dp′ < dp/2.

Now we have to show that there are no nodes other than xi
and xj that can be the winner of the winner-take-all algorithm.
To this end, note that only those nodes that are connected to
N(Q) will receive some feedback and can hope to be the
winner of the process. So let’s consider such a node x` that is
connected to dp` of the nodes in N(Q). Let Q′ be Q ∪ {x`}
and N(Q′) be the corresponding neighborhood. Because of the
expansion properties we have |N(Q′)| = dp−dp` + |N(Q)| >
3βdp. Thus:

dp` < dp + |N(Q)| − 3βdp = 3dp(1− β)− dp′ .

Now, note that the nodes xi and xj will receive some feedback
from at least dp−dp′ edges because those are the edges that are
uniquely connected to them and noise from the other erroneous
nodes cannot cancel them out. Since dp−dp′ > 3dp(1−β)−
dp′ for β = 3/4, we conclude that dp−dp′ > dp` which proves
that no node outside Q can be picked during the winner-take-
all algorithm as long as |Q| ≤ 2 for β = 3/4.



In the next lemma, we show that the state of erroneous
neurons is updated in the direction of reducing the noise.

Lemma 9. If the constraint matrix W is an (αn, βdp)
expander and the original number of erroneous neurons is
less than emin = b β

1−β c, then in each iteration of the winner-
take-all algorithm the winner is updated toward reducing the
noise.

Proof: As before, we only focus on the case β = 3/4.
When there is only one erroneous node, it is obvious that all
its neighbors agree on the direction of update and the node
reduces the amount of noise by one unit.

If there are two nodes xi and xj in error, since the number
of their shared neighbors is less than dp/2 (as we proved in
the last lemma), more than half of their neighbors agree on
the direction of update. Therefore, whoever the winner is will
be updated to reduce the amount of noise by one unit.

The following theorem sums up the results of the previous
lemmas to show that the winner-take-all algorithm is guaran-
teed to perform error correction.

Theorem 7. If the constraint matrix W is an (αn, βdp)
expander, then the winner-take-all algorithm is guaranteed to
correct at least emin = b β

1−β c positions in error, irrespective
of the magnitudes of the errors.

Proof: The proof is immediate from Lemmas 8 and 9.

B. Analysis of the Bit-Flipping Algorithm

Roughly speaking, one would expect the bit-flipping algo-
rithm to be sub-optimal in comparison to the winner-take-all
strategy, since the pattern neurons need to make independent
decisions, and are not allowed to cooperate amongst them-
selves. In this subsection, we show that despite this restriction,
the bit-flipping algorithm is capable of error correction; the
suboptimality in comparison to the winner-take-all algorithm
can be quantified in terms of a larger expansion factor β being
required for the graph.

Theorem 8. If the constraint matrix W is an (αn, βdp)
expander with β > 4

5 , then the bit-flipping algorithm with
γ = 3

5 is guaranteed to correct at least two positions in error,
irrespective of the magnitudes of the errors.

Proof: As in the proof for the winner-take-all case, we
will show our result in two steps: first, by showing that for
a suitable choice of the bit-flipping threshold γ, that only the
positions in error are updated in each iteration, and that this
update is towards reducing the effect of the noise.

a) Case 1: First consider the case that only one pattern
node xi is in error. Let xj be any other pattern node, for
some j 6= i. Let xi and xj have dp′ neighbours in common.
As argued in the proof of Lemma 8, we have that

dp′ < 2dp(1− β). (22)

Hence for β = 4
5 , xi receives non-zero feedback from at least

3
5dp constraint nodes, while xj receives non-zero feedback
from at most 2

5dp constraint nodes. In this case, it is clear that

setting γ = 3
5 will guarantee that only the node in error will

be updated, and that the direction of this update is towards
reducing the noise.

b) Case 2: Now suppose that two distinct nodes xi and
xj are in error. Let Q = {xi, xj}, and let xi and xj share
dp′ common neighbours. If the noise corrupting these two
pattern nodes zi and zj are such that sign(zi) = sign(zj),
then both xi and xj receive −sign(zi) along all dp edges
that they are connected to during the backward iteration.
Now suppose that sign(zi) 6= sign(zj). If |zi| = |zj |, then
xi (xj) receives non-zero feedback only from the dp − dp′

edges in N ({xi})\Q (resp. N ({xj})\Q) during the backward
iteration, and the feedback is such that the noise is reduced
at the end of the update. If on the other hand |zi| > |zj |,
then xi receives −sign(zi) along all dp of it’s incoming
links during the backward iteration. However, xj receives the
correct −sign(zj) feedback along only the dp−dp′ edges from
N ({xj})\Q, and receives incorrect feedback of sign(zj) along
the dp′ edges from Q.

From the above and from (22), we conclude that when two
pattern nodes are in error, at least one of the erroneous pattern
nodes receives correct feedback along dp − 2dp(1 − β) or
more edges; and, in the event of a node xj (say) receiving
incorrect feedback along some of it’s incoming links, we have
that gj = (−sign(zj))

dp−2dp′
dp

. For β = 4
5 , we have from

(22) that sign(gj) = −sign(zj) since dp − 2dp′ > 0; hence
irrespective of the value of γ, it is not possible that the node
xj is updated such that the noise magnitude is increased.

Let us now examine what happens to a node x` that is
different from the two erroneous nodes xi, xj . Suppose that
x` is connected to dp` nodes in N (Q). From the proof of
Lemma 8, we know that

dp` < 3dp(1− β)− dp′
≤ 3dp(1− β).

Hence x` receives at most 3dp(1 − β) non-zero messages
during the backward iteration.

For β > 4
5 , we have that dp − 2dp(1 − β) > 3dp(1 − β).

Hence by setting β = 4
5 and γ = [dp − 2dp(1− β)]/dp = 3

5 ,
it is clear from the above discussion that we have ensured the
following in the case of two erroneous pattern nodes:

• At least one erroneous pattern node is updated in each
iteration of our algorithm such that the noise magnitude
is reduced.

• No erroneous pattern node can be updated such that the
noise magnitude is increased.

• No pattern node other than the erroneous pattern nodes
is updated.

C. Choice of Parameters

In order to put together the results of the previous two
subsections and obtain a neural associative scheme that stores
an exponential number of patterns and is capable of error



correction, we need to carefully choose the various relevant
parameters. We summarize some design principles below.
• From Theorems 6 and ??, the choice of β depends on
dp, according to 1

2 + 1
4dp

< β < 1− 1
dp

.
• Choose dc, S, S

′, r , m/n such that Sn > (dcS)rn

and S′ > dcS, so that Theorem 4 yields an exponential
number of patterns.

• For a fixed α, n has to be chosen large enough so that an
(αn, βdp) expander exists according to Theorem 6, and
so that αn/2 > emin = b β

1−β c.
Once we choose a judicious set of parameters according to

the above requirements, we have a neural associative memory
that is guaranteed to recall an exponential number of patterns
even if the input is corrupted by errors in two coordinates. Our
simulation results will reveal that a greater number of errors
can be corrected in practice.

APPENDIX C
AVERAGE NEIGHBORHOOD SIZE

Now it is time to obtain an expression for Se = E(|N (Et)|).
To do so, we assume the following procedure for constructing
a right-irregular bipartite graph:
• In each iteration, we pick a variable node x with a de-

gree randomly determined according to the given degree
distribution.

• Based on the given degree dx, we pick dx constraint
nodes uniformly at random with replacement and connect
x to the constraint node.

• We repeat this process n times, until all variable nodes
are connected.

Note that the assumption that we do the process with re-
placement is made to simplify the analysis. This assumption
becomes more exact as n grows.

With some abuse of notations, let Se denote the size of the
neighborhood of E when the size of E is equal to e. We write
Se recursively in terms of e as follows:

Se+1 = Edx{
dx∑
j=0

(
dx
j

)(
Se
m

)dx−j (
1− Se

m

)j
(Se + j)}

= Edx{Se + dx(1− Se/m)} (23)
nonumber (24)

= Se + d̄(1− Se/m) (25)

Where d̄ = Edx{dx} is the average degree of the pattern
nodes. In words, the first line calculates the average growth of
the neighborhood when a new variable node is added to the
graph. Noting that S1 = d̄, one obtains:

St = m

(
1− (1− d̄

m
)|mcEt|

)
(26)

In order to verify the correctness of the above analysis, we
have performed some simulation the results of which are given
in this section.

Figure 5 illustrates the average neighborhood size in each
iteration for a randomly chosen degree distribution with n =

400 and m = 200 being the number of pattern and constraint
nodes, respectively. We generated 100 random graphs and the
dashed line shows the average neighborhood size over these
graphs. It is obvious that the theoretical value approximates
the simulation results rather exactly.

Fig. 5. The theoretical estimation and simulation results for the neighborhood
size of an irregular graph with a given degree-distribution for n = 400,
m = 200 and over 2000 random graphs.
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