
Progress Report

14-29 February 2012

Amir Hesam Salavati
E-mail: hesam.salavati@epfl.ch

Supervisor: Prof. Amin Shokrollahi
E-mail: amin.shokrollahi@epfl.ch

Algorithmics Laboratory (ALGO)
Ecole Polytechnique Federale de Lausanne (EPFL)

March 14, 2012

1

1 Summary

In the last two weeks, my primary focus was on extending the proof of the learning algorithm
which I mentioned in November 2011 reports to more general cases so that it becomes ready for the
journal paper. Corresponding to the proof, I read two elegant papers on proving the convergence of
some iterative neural learning algorithms. I also started writing the text for the journal version of
our ITW paper. Finally, I spent some time organizing MATLAB codes for simulating the learning
algorithm and started implementing the idea of having a neural network which adaptively learns
the constraints, i.e. starting with a few constraints and based on the performance learning more if
needed.

In this report, I am going to explain the steps I have taken to prove the convergence of the
sparse learning algorithm and the summary of the two papers I have read.

2 Journal Paper

2.1 Summary of the Learning Algorithm

In order to develop a simple iterative algorithm, we formulate the problem as an optimization
framework and then use primal-dual approaches to iteratively find the solution. The problem to
find a constraint vector W is given by equation (1).

min

C∑
µ=1

|xµ · w|2 (1a)

subject to
‖w‖0 ≤ q (1b)

and
‖w‖22 ≥ ε (1c)

where q ∈ N determines the degree of sparsity and ε ∈ R+ prevents the all-zero solution.
Therefore, we first relax (1) as follows:

min
C∑
µ=1

|xµ · w|2 + λ(g(w)− q′). (2a)

subject to:
‖w‖22 ≥ ε (2b)

In the above problem, we have approximated the constraint ‖w‖0 ≤ q with g(w) ≤ q′ since ‖.‖0 is
not a well-behaved function. The function g(w) is chosen such that it favors sparsity. For instance
one can pick g(w) to be ‖.‖1, which leads to `1-norm minimizations. In this paper, we consider the
function

g(w) =
n∑
i=1

tanh(σw2
i)

where σ is chosen appropriately. The larger σ is, the closer g(w) will be to ‖.‖0. By calculating the
derivative of the objective function and primal-dual optimization techniques we obtain the iterative

2

Algorithm 1 Iterative Learning

Input: Set of patterns xµ with µ = 1, . . . , C, stopping point p.
Output: w
while maxµ |y(µ, t)| > p do

Compute y(µ, t) = xµ.w(t)

Update w(t+ 1) = w(t)− αty(µ, t)
(
xµ − y(µ,t)w(t)

‖w(t)‖2

)
− λtf(w(t)).

Update λt+1 =
[
λt + δ(ε− ‖w‖22)

]
.

t← t+ 1.
end while

algorithm given by algorithm 1. Where f(w) : Rn → Rn = ∇g(w) is the gradient of the penalty
term for non-sparse solutions. Since we are interested in finding m orthogonal vectors, we have to
do the above procedure m times in parallel.

Therefore, in order to prove the convergence, in each iteration we must show the MSE decreases.
More specifically, denoting the MSE in iteration t by E(t), we must show that:

E(t) =
1

C

C∑
µ=1

|w(t)Txµ|2 < E(t− 1) (3)

In what follows, I will explain the approaches which might help us in proving (3).

2.2 Approach 1

In the first approach, I am going to exploit the fact that the convergence of weight vectors to
the corresponding null bases has been proven before in [4]. Since our algorithm is basically the
algorithm given in [4] plus an additional sparsity constraint, we might be able to show that our
algorithm converges if the algorithm mentioned in [4] converges. To this end, we show that E(t) in
our approach is less than or equal to the MSE at iteration t of the Anti Stochastic Gradient Ascent
(ASGA) algortihm proposed in [3], which is an extension of the one in [4]. Let w′(t) = w(t− 1)−
αty(t− 1)x(t), with y(t) = w(t)tx(t). Therefore, w′(t) identifies the learning algorithm mentioned
in [3], with normalizaion constraints being omitted for simplicity. Now, our learning algorithm can
be defined as w(t) = η(w′(t); θt). As a result, if we can prove the following relationship, we have
proven that in all the circumstances that the ASGA algorithm converges, ours converges as well.
Suppose in iteration t, we have learned the pattern x′. Then, we would like to prove that:

P1 = Pr{E(t+ 1) = Ex|η(w′(t); θt+1)Tx|2 < E′(t+ 1) = Ex|w′(t)Tx|2} ≥ 1− ε, ∀x′ ∈ X (4)

With ε being a small real number. In words, we claim that with high probability, the MSE of our
algorithm in iteration t, E(t), is less than or equal to the MSE of the ASGA algorithm in the same
iteration, E′(t).

Since we draw the patterns x′ uniformly at random, we relax (4) into the following relationship:

P2 = Pr{E(t+ 1) = Ex′Ex|η(w′(t); θt+1)Tx|2 < E′(t+ 1) = Ex′Ex|w′(t)Tx|2} ≥ 1− ε (5)

where w′(t) = w(t−1)−αty(t−1)x′, with y(t−1) =
∑n

j=1wj(t−1)x′j . Assming entries in w(0) are
i.i.d. Gaussian random variables and the entries of pattern vectors are i.i.d. over some probability
distribution, we take the following steps to prove (5):

3

1. w′j(t) and xj are uncorrelated, i.e. E{w′j(t)xj} = E{w′j(t)}E{xj}.

2. Letting k denote the number of entries in w′(t) whose absolute values are smaller than θt, we
formulate (5) as an expectation over k(t).

3. Letting w̄′(t) = ExEx′(w′(t)), we show that the entries in w̄′(t) are correlated Gaussian
random variables with mean µw(t), variance σw(t) and correlation coefficient ρw(t).

4. We find a closed form relationship for (5) conditioned on k, the number of small entries in
w′(t).

5. We analyze the assymptotic behavior of (5) as n tends to infinity and show that it holds for
large enough n’s.

2.2.1 Step 1: Proving uncorrelatedness

to start, we show that if the entries in x (or x′) and w(t− 1) are independent, so will be the entries
in x and w′(t). We have:

Ex{xiw′i(t)} = Ex{xiwi(t− 1)} − αtEx{xix′i
n∑
j=1

x′jwi(t− 1)}

= Ex{xi}Ex{wi(t− 1)} − αtEx{xix′i
n∑
j=1

x′jwi(t− 1)}

= Ex{xi}Ex{wi(t− 1)} − αtEx{xi}x′i
n∑
j=1

x′jEx{wi(t− 1)}

= Ex{xi}

Ex{wi(t− 1)} − αt{xi}x′i
n∑
j=1

x′jEx{wi(t− 1)}

= Ex{xi}Ex{w′i(t)} (6)

where the first equality follows from the assumption that xi and wi(t − 1) are uncorrelated. The
second equality is the result of the fact that the pattern vectors are generated independently
randomly.

Therefore and as a result of (6), if we generate the entries of w(0) randomly and independent
of x, we will maintain the uncorrelated assumption throughout the algorithm.

2.2.2 Step 2: Breaking equation (5) into smaller parts

Letting k denote the number of entries in w′(t), we can simplify equation (5) as follows:

P1 = Pr{E(t+ 1) = Ex′Ex|η(w′(t); θt+1)Tx|2 < E′(t+ 1) = Ex′Ex|w′(t)Tx|2}

=
n∑
k=0

PkPr{Ex′Ex|
n−k∑
j=1

w′j(t)xj |2 < Ex′Ex|
n∑
j=1

w′j(t)xj |2} (7)

4

where Pk is the probability of having k entries in w′(t) whose absolute values are smaller than θt.
Now consider the following definitions:

A =
n−k∑
j=1

w′j(t)xj (8)

B =
n∑

j=n−k+1

w′j(t)xj (9)

Therefore, equation (7) can be rewritten as:

P1 = Pr{Ex′Ex|A|2 ≤ Ex′Ex|A+B|2}
= Pr{0 ≤ Ex′Ex(B2 + 2AB)}
= Pr{−2Ex′Ex(AB) ≤ Ex′Ex(B2)} (10)

Now using the fact that Ex(B2) ≥ (Ex(B))2, we see that Pr{−2Ex′Ex(AB) ≤ Ex′Ex(B2)} ≥
Pr{−2Ex′Ex(AB) ≤ (Ex′Ex(B))2}. Therefore, in order to have (5) it is sufficient to have P2 ≥ 1−ε,
where P2 is defined as follows:

P2 =

n∑
k=0

PkPr{(Ex′Ex(B))2 ≥ −2Ex′Ex(AB)}

=

n∑
k=0

PkPr{(Ex′Ex(B))2 ≥ −2Ex′Ex(A)Ex′Ex(A)}

=

n∑
k=0

Pk [Pr{Ex′Ex(B) > 0}Pr{(Ex′Ex(B + 2A) ≥ 0}+ Pr{(Ex′Ex(B) < 0}Pr{(Ex′Ex(B + 2A) ≤ 0}]

=

n∑
k=0

Pk
[
Pr{B̄ > 0}Pr{B̄ + 2Ā ≥ 0}+ Pr{B̄ < 0}Pr{B̄ + 2Ā ≤ 0}

]
(11)

Where the second equality follows from the fact that the index of entries in A and B is non-
overlapping and since xi’s are chosen i.i.d. at random, A and B are uncorrelated when it comes to
expectations over x and x′. In addition, B̄ = Ex′Ex(B) and Ā = Ex′Ex(A).

2.2.3 Step 3: Proving that w̄′ is Gaussian

Letting w̄′(t) = ExEx′(w′(t)) we see that:

w̄′i(t) = ExEx′(w′i(t)) = (1− ατx)w̄i(t− 1)− αt(µx)2
∑
j 6=i

w̄j(t− 1) (12)

Where τx = Ex{(x′i)2}. Therefore, if {w̄j(t−1)} are gaussian random variables with mean µw(t−1),
variance σ2

w(t− 1) and covariance νw(t− 1), {w̄′i(t)} are also correlated Gaussian random variables
with:

µw′(t) =
(
1− αtτx − αt(n− 1)(µx)2

)
µw(t− 1) (13a)

5

σ2
w′(t) =

(
(1− αtτx)2 + (n− 1)α2

t (µx)4
)
σ2
w(t− 1)

+
(
(n− 1)(n− 2)α2

t (µx)4 − 2(n− 1)αt(µx)2(1− αtτx)
)
νw(t− 1) (13b)

νw′(t) =
(
(n− 1)α2

t (µx)4 − 2αtµ
2
x(1− αtτx)

)
σ2
w(t− 1)

+
(
(1− αtτx)2 + (n− 1)(n− 2)α2

t (µx)4 − 2(n− 2)αt(µx)2(1− αtτx)
)
νw(t− 1)(13c)

2.2.4 Step 4: closed from formula

From the definition of Ā and B̄ we know that:

Ā = µx

n−k∑
j=1

w̄′j(t) (14)

and

B̄ = µx

n∑
j=n−k+1

w̄′j(t) (15)

Knowing that {w̄′i(t)} are correlated Gaussian random variables, we see that Ā and B̄ are also
Gaussian random variables with:

µĀ(t) = (n− k)µxµw′(t) (16a)

µB̄(t) = kµxµw′(t) (16b)

σ2
Ā(t) = (µx)2

(
(n− k)σ2

w′ + (n− k)(n− k − 1)νw′(t)
)

(16c)

σ2
B̄(t) = (µx)2

(
kσ2

w′ + k(k − 1)νw′(t)
)

(16d)

Similarly, if one defines D̄ = B̄+ 2Ā, it is obvious that D̄ is also a Gaussain random variable with

µD̄(t) = (2n− k)µxµw′(t) (17a)

σ2
D̄(t) = (µx)2

(
(4n− 3k)σ2

w′ +
(
n2 + 2nk − 2k2 − n

)
νw′(t)

)
(17b)

As a result, one can easily see that:

P3 = Pr{B̄ ≥ 0|k} = 1−Q
(
µB̄(t)

σB̄(t)

)

= 1−Q

 kµw′(t)√
kσ2

w′ + k(k − 1)νw′(t)

= 1−Q

 µw′(t)
√
k√

σ2
w′ + (k − 1)νw′(t)

 (18)

likewise:

P4 = Pr{D̄ ≥ 0|k} = 1−Q
(
µD̄(t)

σD̄(t)

)

= 1−Q

 (2n− k)µw′(t)√
(4n− 3k)σ2

w′ + (n2 + 2nk − 2k2 − n) νw′(t)

 (19)

6

Combining the above formulas, we can rewrite (5) as:

P1 = Pr{Ex|η(w′(t); θt+1)Tx|2 < Ex|w′(t)Tx|2}

≥
n∑
k=0

Pk
[
Pr{B̄ > 0}Pr{B̄ + 2Ā ≥ 0}+ Pr{B̄ < 0}Pr{B̄ + 2Ā ≤ 0}

]
=

n∑
k=0

Pk [P3P4 + (1− P3)(1− P4)]

= 1−
n∑
k=0

Pk [2P3P4 − P3 − P4)] (20)

Where Pk is the probability that k entries in w′(t) has absolute values smaller than θt. Now
since {w′i(t)} are correlated Gaussian variables,

2.3 Current Issues

There are some major issues with the approach discussed above:

1. Equation (20) is too difficult to be handled analytically.

2. Even if it was possible to handle (20), the assumption wj(t)’s being Gaussian is questionable
as they are capped Gaussian random variables, i.e. those that are put to zero if their absolute
value falls short of some threshold.

3. Statisticall properties in equation (18) and (19), such as σw′ of µw′ , depend on n and k as
well. Therefore, in order to analyze the asymptotic behavior of equation (20) for n→∞ we
must incorporate this dependence as well.

3 Papers

In the past two weeks, I also read two papers on proving the converges of learning algorithms
similar to the one we use in our journal paper [7]. Both papers discuss a learning algorithm to
learn the first largest eigenvectors of one or many subspaces from the sample vectors drawn from
those subspaces.

3.1 Learning One Subspace

In [4], the authors prove the convergence of the Stochastic Gradient Ascent (SGA) learning algo-
rithm to the largest eigenvectors of the correlation matrix in a given data set. This paper is of
particular importance as the same approach is used in many learning methods such as [3] to iden-
tify the null basis of a set of given patterns, which were used later as a classification method. The
authors use stochastic approximation techniques to prove the convergence of the proposed learning
method and estimate the largest eigenvalues as well.

More specifically, the problem of interest is as follows: consider an n×n almost surely symmetric
real matrix whose mean is denoted by A ∈ Rn×n. The goal is to compute the dominant eigenvectors
and eigenvalues of this matrix in a situation where A is unknown, but a sequence of samples {Ak}

7

are available, where A = E{Ak}. If Ak’s were general, then one should use standard techniques
such a the QR method. However, when Ak’s are correlation matrices, i.e. they have the form
Ak = xkx

T
k , where {xk} is a random sequence of vectors, then an iterative method which updates

the estimates each time a new vector arrives is simpler and have computational advantage.
The authors propose a learning algorithm (given by equation (21)) and prove the almost sure

convergence of the weight vectors to the first largest eigenvectors of the correlation matrix A.

W̃k = Wk−1 +AkWk−1Γk (21a)

Wk = W̃kR
−1
k (21b)

Now, the algorithm (21) translates into the following equation when we only consider one weight
vector wk in iteration k:

w̃k = wk−1 + γkxkx
T
kwk−1 (22a)

ww = w̃k/‖w̃k‖ (22b)

If γk is small enough, the normalization factor in equation (22b) can be absorbed into the main
learning equation. Therefore, we might write:

wk = wk−1 + γk[Akwk−1 − (wTk−1Akwk−1)wk−1] + γkbk (23)

where bk = O(γk).
The idea behind the proof of the convergence is as follows:

• First we can rewrite the learning equation (22) in terms of a differential equation. Note that
there are two terms (given in equation (24)) plus a stochastic small term which is O(γk),
where γk is the step size in the learning algorithm.

dz

dt
= Az − (zTAz)z

zT z
(24)

• The authors utilize the fact that this stochastic term is bounded and has some conditions
which results in the corresponding differential equation to have a domain of attraction. Then,
if wk falls infinitely often in this domain with probability one, then the weight vector wk con-
verges to the solution of this differential equation (this is Lemma 1).

• Now the interesting thing is that the solution of this differential equation converges to largest
eigenvectors of the correlation matrix if the projection of wk onto the largest eigenvector is
bounded away from zero infinitely often (this is Lemma 2).

• Finally the authors show that the required projection constraint above holds for the set of
assumptions on γk’s and the correlation matrix A (This is Lemma 3).

Given that we use a similar approach in [7] in order to learn the sparse null basis for a set of
given patterns, this paper is of outmost importnace for our work.

8

3.2 Learning many subspaces

In [5], the authors propose a learning algorithm, which is very similar to the Learning Subspace
Method (LSM) by Kohonen et al. [6]. The authors prove the almost sure convergence for this
method. The difference between this work and [4] is that here, we have K classes, ω(1), . . . , ω(K),
which are reprented by subspaces {L(i)}, for i = 1, . . . ,K. We would like to learn the basis vectors
of these subspaces (denoted by the first largest eigenvectors) using neural learning algorithms.

Let the patterns belonging to class i be defined by {x(i)
k }, with i = 1, . . . ,K and k being the

pattern index. We have x
(i)
k ∈ Rn. Now let U1

k−1, . . . , U
K
k−1 be a set of matrices, where the columns

of U ik−1 are orthonormal vectors which span the subspace defined by the set of vectors x
(i)
0 , . . . x

(i)
k−1,

i.e.:
L(i)
k−1 = R(U ik−1) (25)

where R defines the range of a matrix.
The proposed learning algorithm by the authors is as follows: At step k of the training phase,

assume the input vector x belongs to class i, i.e. x = x
(i)
k . Then do the following:

Ũ
(i)
k = (I + µ

(i,i)
k x

(i)
k x

(i)T
k)U

(i)
k−1 (26a)

Ũ
(j)
k = (I + µ

(j,i)
k x

(i)
k x

(i)T
k)U

(j)
k−1,∀j 6= i (26b)

U
(i)
k = Ũ

(i)
k V

(i)
k , ∀i (26c)

Where the matrices V
(i)
k perform Gram-Schmidt orthonormalization.

In words, equation (26a) rotates the basis vectors in U
(i)
k−1 more towards the correct subspace

and equation (26b) rotates U
(j)
k−1 to minimize the projection of x(i) on L(j).

In [6], all µ
(j,i)
k ’s are zero if pattern x

(i)
k is correctly classified in L(i). Otherwise, if the pattern

is wrongly classified in L(j), then only µ
(j,i)
k and µ

(i,i)
k are non-zero and all other coefficients are

equal to zero. However, in this paper the authors assume the coefficients are independent of the
intermediate results (i.e. classification results during the learning phase).

To prove the convergence of the suggested algorithm, the authors use stochastic approximation

techniques again to write the projection matrix at iteration k (Pk = U
(1)
k U

(1)T
k) of the algorithm as

a function of the projection matrix in iteration k − 1, which is given by the following equation:

Pk = Pk−1 + µk[Pk−1C̄ + C̄Pk−1 − 2Pk−1C̄Pk−1] (27)

Then, the authors formulate equation (27) in terms of the differential equation, given below,
and prove that Pk converges to the solution of this equation.

dP

dt
= PC̄ + C̄P − 2PC̄ (28)

where P is a matrix. Finally, the authors show that the solution to (28) is

P (t) = eC̄(t−t0)V (V T e2C̄(t−t0)V)−1V T eC̄(t−t0) (29)

9

with V being a n× p(1) matrix such that V V T = P (t0) and V TV = I. Then they show that P (t)
converges to F̄ , the orthogonal projection matrix on the subspace M(1), as t tends to ∞, where
C̄ is defined below and M(i) is the subspace spanned by the eigenvectors of C̄(i) corresponding
to the p(i) largest eigenvalues. There is a number ε > 0 such that in equation (26), the event

{‖U (i)T
k z‖ ≥ ε, ∀z ∈M(i)with‖z‖ = 1} occurs infinitely often with probability one.

C̄(i) = θ(i,i)π(i)C(i) −
∑
j 6=i

π(j)θ(i,j)C(j) (30)

in which µ(j,k) = θ(i,j)µk.

4 Future Works

For the moment, the proof of convergence of the learning algorithm in our paper [7] remains unsolved
and needs further work.

References

[1] D. L. Donoho, A. Maleki, A. Montanari, Message passing algorithms for compressed sensing,
Proc. Nat. Acad. Sci., Vol. 106, 2009, pp. 1891418919.

[2] K.R. Kumar, A.H. Salavati and A. Shokrollahi, Exponential pattern retrieval capacity with
non-binary associative memory, Proc. IEEE Information Theory Workshop, 2011.

[3] L. Xu, A. Krzyzak, E. Oja, Neural nets for dual subspace pattern recognition method, Int. J.
Neur. Syst., Vol. 2, No. 3, 1991, pp. 169-184.

[4] E. Oja, J. Karhunen, On stochastic approximation of eigenvectors and eigenvalues of the ex-
pectation of a random matrix, J. Math. Analysis and Applications, Vol. 106, No. 1, 1985, pp
6984.

[5] E. Oja, J. Karhunen, An analysis of convergence for a learning version of the subspace method,
J. Math. Analysis and Applications, Vol. 91, No. 1, 1983, pp. 102111.

[6] T. Kohonen, G. Nemeth, K. Bry, M. Jalanko, H. Riittine, Spectral classification of phonemes
by learning subspaces, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
1979, pp. 97-100.

[7] K.R. Kumar, A.H. Salavati and A. Shokrollahi, Exponential pattern retrieval capacity with
non-binary learning associative memory, Under preparation.

10

	Summary
	Journal Paper
	Summary of the Learning Algorithm
	Approach 1
	Step 1: Proving uncorrelatedness
	Step 2: Breaking equation (??) into smaller parts
	Step 3: Proving that "7016w' is Gaussian
	Step 4: closed from formula

	Current Issues

	Papers
	Learning One Subspace
	Learning many subspaces

	Future Works

