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Abstract

MLC flash memory is a non-volatile memory, in which the cells can be injected with different numbers of electrons. The

unique characteristics of asymmetric writing/erasing operation and limit writing/erasing cycles of flash memory make the erasing

operation expensive in terms of the lifetime of flash memory. We presenta new rewriting scheme to increase the writing operations

between two consecutive erasing operations by making better usage of the charge levels in the cells. The scheme can get better

rewritten times without expensive modifications to the normal flash memoryarchitecture.

I. I NTRODUCTION

FLASH memory is a non-volatile memory that can be both electrically programmed and electrically erased. There are

two major types, NOR and NAND, differentiated by the matrix structures of storage units [1]. In recent years, the

NAND flash memory has been experiencing a revolutionary development in the storage area because of the continuing scaling

in the cost per GByte, especially by using Multiple Level Cells (MLC) [2]. Our paper will mainly focus on NAND MLC flash

memory. In the following, flash memory means NAND MLC flash memory if not mentioned otherwise.

The unique characteristics of flash memory, such as low-latency IOPS and low power consumption lead to the increasing

potentials of the application in both consumer and enterprise systems. However, the limited rewriting endurance of theflash

memory, which is typically104 for MLC flash memory, greatly slows its adoption to all the storage architectures. Moreover,

depending on different workloads, the lifetime of the flash memory is greatly reduced. According to Micron’s datasheet,the

newest product RealSSD C400 with a capacity of 128GB actually has only a capacity of 72TB that can be written under the

assumed conditions [3]. This is almost a reduction by a factor of 15 given that the program/erase cycle for MLC cells is104.

Therefore, how to prolong the lifetime of flash memory is a hottopic nowadays.

There have been many works done on the storage system level toimprove the endurance of flash memory based Solid State

Device (SSD). One of the main directions is using hybrid storage architecture using HDD and SDD. Soundararajanet al. [4]

used HDD as write cache for SDD which could save writes to SDD up to 50% in order to prolong the lifetime of SSD. The
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other direction is trying to balance the writes to SSD on pages or block levels, called wear leveling technique [5]. In flash

memory, there is an intermediate layer called Flash Translation Layer (FTL), which functions as an indirect mapping between

the Logical Block Address (LBA) and Physical Block Address (PBA). The generic structure of FTL is the Log-Structured File

system (LSF), in which several parameters of the basic operation units such as write times, validity and so on [6]. Based on

these parameters, the write to the device are pointed to the less frequent written units, so as to average the write frequencies of

the whole operation units in flash memory. The lifetime of flash memory could be effectively extended, by jointly considering

the workloads, wear leveling policies and garbage collecting policies [7]–[10]. However, these schemes have a drawback that

the lifetime of flash memory is extended by sacrificing the actual capacities of the devices. As Huet al. [11] analyzed, even

considering the static and dynamic workloads, these schemes may suffer write amplification as high as 3 in some cases.

On the other hand, some researchers work on the data representation in flash memory to make the write-constraint flash

memory to be “write-free” devices. These works were first inspired by Rivest and Shamir [12]. They modeled some memories

as Write-Once Memory (WOM), which means the basic storage unit could only transit to “1” state from “0” state but not

vice versa. The WOM codes use a group of these basic units to represent the data of several variables which could be

freely transited from “1” state to “0” state and vice versa, though the times of changing (rewriting) the variables maybe

limited. People are trying to maximize the number of variables and the rewriting times by using the limit number of the basic

storage units [13]–[18]. Meanwhile, people try to design WOM codes with error-correcting capability [19]–[21]. Recently,

Jiang et al. [22] developed floating codes. Floating codes not only couldgeneralize the WOM codes, but more important,

they could achieve very high rewritten times for two or threevariables. Even though, floating codes are not perfect schemes,

such as the complicated mapping scheme prevent practical encoding and decoding the variables. We are trying to solve these

problems by using a so-called water-filling scheme.

In the following of this paper, some fundamentals of flash memory will be given in section II, besides a simple example of

the new scheme. And in section III, we will formulate the writing and reading operation of the new scheme. The scratched

implementation of our scheme will be given at the end of the section. At last, performance analysis will be evaluated by

comparing our scheme with other schemes.

II. FUNDAMENTALS AND A SIMPLE CONSTRUCTION

In this section, we will first introduce some fundamentals ofworking principles in flash memory. Later, we will explain the

motivation of our new scheme. Before ending the section, we will give a simple example to show the initial motivation and

how it works for our new scheme.
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Fig. 1. A simple example of water-filling scheme. The write countis 2, the size of the variable is 2 , the charge level of the cellis q , and then cells.

A. Fundamentals of Flash memory

In flash memory, the floating-gate transistor is the basic storage unit [1], [2]. The transistor is also called cell. By using

hot-electron injection mechanism or the Fowler-Nordheim tunneling mechanism, the charge (i.e. electrons) are trapped in (pro-

grammed) or released from (erased) the floating gate of each cell. The charge could be measured by some discrete levels of

voltage, called thresholds. The charges can be trapped in the floating gate without powering on, which makes flash memory a

non-volatile memory. The combinations of various measurement results from several cells are used to represent the value of

variables (data). The operation of trapping (or releasing)charge is called writing (or erasing), while the measurement of the

charge levels is called reading. The flash cells are arrangedin the matrix-like structures, which are called blocks. Inside each

block, there are pages, which are the elementary writing/reading granularities in flash memory. Every page, usually contains

2kB cells to store data, and is extended with additional spare bytes, called metadata. In order to keep the low latency property

and increase the cell density of flash memory, it has a unique characteristic that the erasing operation is based on blockswhile

the writing operation is based on pages. Meanwhile, the cells have limited program/erase cycles which typically is105 times

for single level cells (SLC) and104 times for MLC. This brings great challenges when using flash memory to design SSD. For

instance, in the primitive operation, it’s necessary to erase the whole block and then rewrite it again except the targetcell if

there is just an update of the data stored in the cell. This operation will induce huge inefficiency not only on the writing/erasing

operations, but also greatly reduce the lifetimes of other cells in the same block. There are various ways that could be and

have been done to exploit the capacity of inefficient operations in order to prolong the lifetime of SSD. In this paper, we are

going to exploit the capacity of the MLC cells from the angle of data representations so as to extend the lifetime of flash

memory.
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B. Motivation

In the traditional scheme, flash memory usually erases each MLC cell after each write and don’t care which charge level of

the cell it was written. This is not efficient in term of using the charge level to represent data (variable values), because the cell

will get erased even if the cell is only charged to the lowest level. Jianget al. designed floating codes by carefully changing

the cell charge level when updating the variable values. Floating codes achieved great improvement on the rewritten times.

Nothing is perfect. Floating codes have some drawbacks: First, the mapping between the cells’ states and variable values is

complicate, especially when the number of variables is morethan three, which make the reading of data very hard; Second,

it is necessary to have the knowledge of the exact charge levels of all the cells during reading the variable values even for

small number of variables, which brings more routing complexity in the physical layer when parallel reading thousands of

cells; Third, according the updating rules of floating codes, each write could only change the value of one variable.

C. A simple example

In order to solve the problems, we proposed a new data representation scheme. Here is the simple example of the scheme

in the case of using one cell to represent data. As usual, the variable value is represented by the charge level of the cell in

the example. If the value is binary, then one charge level is enough to differentiate the two states of the variable. Let’sdefine

the comparatively low charge level to denote 0 while the highone to 1. After every write, we count the write time starting

from the latest erasing operation of the cell and store the counts in the metadata of the page. When there is a new writing

operation, the charge level of the cell increase to the desired level which depends on the writing counts and the new valueof

the variable. For instance, if the previous write count ist , the charging target level will bet + 1 if the new variable is 1, the

level will be t if the new variable is 0. When there is a reading operation, thesystem first read the write counts stored on the

page and the use the corresponding detecting threshold to detect the charge level of each cell whether it’s high or low and

interpret the corresponding variable value. Fig. 1 shows the example where the write count is two.

In the new scheme, the charge levels are keeping increasing after every write and the differences of charge levels between

the neighboring cells are limited, like a shifting windows moving towards the highest charge level. We jointly use writecounts

and windowed charge levels of the cells to represent the variable value. The updating rule of cells’ states in the new scheme

is like filling the water into the containers and the average water level inside the container is increasing after every write so

we name it the water-filling scheme.
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III. W RITING AND READING OF THE WATER-FILLING SCHEME

In this section, the general writing and reading scheme willbe given. At first, we will introduce some definitions to facilitate

our description. Then we will describe how the water-fillingscheme works for the case that the variable values are stored

in one cell. And later, we will extend the one cell case to the multiple cells case. At last, we will discuss some practical

implementation issues about the water-filling scheme.

A. Definitions

In order to reduce the ambiguity in description as much as possible, we follow the same definitions in Jiang’s work [23] if

there are overlaps.

Definition 1:

We usen cells of q charge levels to storek variables of alphabet sizel. Meanwhile, we useT to denote the rewritten

times in terms of how many writing operations between two consecutive erasing operations andt to denote the write counts

beginning from the latest erasing operation on the cell, where t ∈ {1, 2, · · · , T} . If ci denotes the actual charge level,di

denotes the relative charge level, andvi denotes the variable value, then aftert writes:

• (c1, c2, · · · , cn)t ∈ {0, 1, · · · , q − 1}
n denotes the state of flash memory with cells;

• (d1, d2, · · · , dn)t ∈ {1, 2, · · · ,∆}
n denotes the relative charge level to the lowest charge levelin every write forn cells,

where∆ is called the highest window height ofn cells;

• (v1, v2, · · · , vk)t ∈ {0, 1, · · · , l − 1}
k denotes the values ofk variables.

According the unique characteristic of flash memory, ifq ≥ p, and the state of the flash momory after theqth andpth write

is
(

c
′

1
, c

′

2
, · · · , c

′

n

)

q
and (c1, c2, · · · , cn)prespectively, thenc

′

i ≥ ci, i ∈ {1, 2, · · · , n}.

Definition 2:

We usefu andfd denote the writing function and the reading function of the water-filling scheme, and then they could be

defined as following:

fu : (c1, c2, · · · , cn)t−1
→ (c1, c2, · · · , cn)t (1)

fd : (c1, c2, · · · , cn)t → (v1, v2, · · · , vk)t (2)

B. Single cell case

From the example given in section II, we could summarize principles of the water-filling scheme:
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Fig. 2. The transition diagram for Water-filling scheme (n = 1, k = 1 and l = 4). The number inside the circle is the charge level; aside the circle is the

corresponding binary value of the variable.

1) The write counts are recorded and updated after every writing operation;

2) The consecutive windows share one frame (charge level);

3) Given n,k and l, the height of the shifting window in terms of charge levels are the same in every writing operation,

i.e. equal to∆ + 1;

4) The basis charge level of every writing operation, i.e the lowest charge level of all the possible states of the cell, is

determined by write count, which is∆ × (t − 1).

Fig. 2 is the transition diagram for water-filling scheme when n = 1, k = 1 and l = 4. We can see the windows height

is 3 and every variable is freely transited to all the possible variables in every write. The scheme could make full usage of

the charge levels so as to increase the rewrite times. Moreover, the consecutive rewriting operation shares one charge level by

jointly use the write counts. For the specified case in Fig. 2,every write of variables of alphabet size 4 only needs to increase
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3 charge levels.

In the case of one cell data representation, the variable values are represented by the charge levels in one window of the

cell. In order to include all the possible combinations of variables, the necessary number of unique charge levels will be lk

for each write. So the height of window should not be lower than lk, i.e. ∆ + 1 ≥ lk. The writing function for one cell case

is as following:

(ci)t = fu ((vi)t, t) = ∆ × (t − 1) + m ((vi)t) (3)

Wherem(·) is a bijective function between the variable values and the relative charge levels. Reading operation is detecting

the relative charge levels in the cell. Before detecting therelative charge level from the cell, the basis charge level is set up

with the knowledge of the write countt. Then several thresholds of charge levels are added to the basis charge level to detect

the relative charge value(di)t.

Once the relative charge level of the cells is known, the variable values could be demapped. The reading function for one

cell case is as following:

(vi)t = fd ((di)t) = m−1 ((di)t) (4)

Wherem−1(·) denotes the reverse function ofm(·).

For the single cell case, it’s obvious that the maximum rewritten timesT is as below:

T =

⌊

q − 1

∆

⌋

=

⌊

q − 1

lk − 1

⌋

(5)

We found the rewritten times are exponentially decreasing when the number of variables increases. To solve this problem,

we extend the water-filling scheme from data representationby one cell to jointly using multiple cells.

C. Multiple cells case

In the Multiple cells case, the variable values are jointly stored in a group of cells. The principles of writing and reading for

the multiple cells case are similar to the single cell case, except that the mapping function between the relative chargelevel

and variable value becomes more complex. We set height of theshifting windows in all cells to be equal to∆ considering the

maximum rewritten timesT is decided by the cell with the fastest rising of charge levels in the group, though the windows

height of each cell in the group could be different. Let’s useM(·) denote the bijective mapping from the relative charge level

array to variable values andM−1(·) denote the demapping function. Then the writing and readingfunction could be changed

as below:

(ci)t = fu ((v1, v2 · · · , vk)t, t) = ∆ × (t − 1) + M ((v1, v2 · · · , vk)t) (6)
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(vi)t = fd ((d1, d2, · · · , dn)t) = M−1 ((d1, d2, · · · , dn)t) (7)

Under such writing and reading mechanism, the write timeT is as below:

T =

⌊

q − 1
⌈

l
kÁn

⌉

− 1

⌋

(8)

The detailed proof could be seen from the appendix.

D. Implementation issues

One of the advantages of the water-filling scheme is that the implementation of the scheme could be applied to the normal

flash memory without lots of changes. Let’s scratch the main changes as below:

1) First, we need reserve several bits on the page metadata area to store the write counts. According to equation (5) and

(8), the necessary bits is less thanlog
2
(q − 1);

2) Then, we need some bytes on the system level to store the mapping tables ofm (·) or M (·), and also store the demapping

tables ofm−1 (·) or M−1 (·).

- Writing operation:

According to the writing function specified in equation (3) and (6), the write count is read out and used for calculating

the basis charge level for next write, i.et × ∆if the previous write cout ist − 1 and the shifting windows height is∆.

The corresponding relative charging level of each cell are calculated by the mapping tables ofm (·) or M (·). The target

programming charge level of each cell is the addition of the relative charging level and the basis charge level. Once the

programming of all the cells completes, the write count willbe updated at the end of the writing operation.

- Reading operation:

According to the reading function in equation (4) and (7), weneed to detect the relative charge level of each cell by

⌈log
2
(∆ + 1)⌉ detections and then use the demapping table to decode the variable values. Considering the writing disturb

caused by over charging [24], the detection charge level should be one level higher than the tested threshold. By carefully

designing the demapping tables, it is possible to read one variable value from each detection.

IV. PERFORMANCE ANALYSIS

The water-filling scheme could increase the rewritten timesof flash memory cells under comparatively low complexity which

make the scheme very efficient in prolonging the lifetime of flash memory based SSD and practical to implement. We are

going to discuss the performance of the scheme from the aspect of rewritten times, writing efficiency and reading complexity.
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• Rewritten times

From (8), the Rewritten times are determined byk, l and n, given the constant charge levelsq that the cells could be

programmed. In the binary variable case, i.el = 2, the write time is determined byk andn actually. It implies that there

is a tradeoff between the capacity and the lifetime of the flash memory device: IfkÁn > 1, which means the capacity is

larger than the number of cells, the lifetime becomes shorter; Othervise, vice versa.

Compare to floating codes, the water-filling scheme could getapproximately equal or more rewritten times, especially

for small k, l andn which is more practical for application. In [22], it is said the write time of changing one bit of the

variable that could get by using floating codes is as following:

(n − 1) (q − 1) +

⌊

q − 1

2

⌋

(9)

Whenn = 1, k = 1 andl = 4, which is the case of single cell, floating codes could get
⌊

q−1

2

⌋

rewritten times. Considering

that it takes two write to change the whole value of variable,the rewritten times of the variable are
⌊

q−1

4

⌋

. According

to (8), the water-filling scheme could get
⌊

q−1

3

⌋

rewritten times of changing variable values, which actually is better in

someq values.

When n = 2, k = 3, and l = 2, the water-filling scheme could get
⌊

q−1

2

⌋

rewritten times of changing variable values,

which is the same as floating codes.

• Writing efficiency

Flash memory is programmed by means of the Incremental Step Pulse Programming (ISPP) [25]. The target programming

threshold of each cell is reached by small voltage steps which applied to the gate of the cell. The higher target programming

threshold of the cell it is, the more voltage steps it needs toreach the target which leads to longer programming time. So

in the range of a page programming, the programming time is determined by the cell with highest target threshold in the

normal flash memory. In the water-filling scheme, the programming time is determined by the windows height, which is

usually lower than the highest charge level that the cells could reach. So the programming of the page could be faster

(more efficient) than the normal flash memory by using the water-filling scheme.

• Reading complexity

In the water-filling scheme, the reading operation only needs the relative charge level of the cell given the write counts

is known on the system layer. Compared to the normal flash memory or floating codes, where the absolute charge level

of the cell is needed, the bit width that needed to represent the charge level becomes shorter in the water-filling scheme.

This brings more reduction on the routing complexity in the physical layer of flash memory. We could have faster reading

speed by using the water-filling scheme.
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Generally speaking, it’s possible to get improvement on thelifetime, writing efficiency and reading speed through the

water-filling scheme.

V. CONCLUSION

In the paper, we proposed a new rewriting scheme which could better use the charge levels of the cells to represent data. By

jointly increasing the charge levels of a group of cells, flash memory could get approximately optimal rewritten times inorder

to get longer lifetime. The average charge levels of the cells could reach as high as possible before the cells get erased.So the

new scheme is quite efficient in using the charge levels to represent data. Meanwhile, by using the write count mechanism,

the writing and reading operation could become faster than normal flash memory schemes.

APPENDIX A

PROOF OF THEREWRITTEN TIMES FOR MULTIPLE CELLS CASE

As described in section III, we use the combinations of various charge levels in several cells to represent the variable value.

So the number of the whole combinations (states) should be larger than the total size of the variables. Let’s assume we usen

cells of q charge levels to representk variables of alphabet sizel. Since thek variables are independent, so the total size of

variables islk.

According to the writing principles, the basis charge levelwill increase the same level for all the cells after every write. If

the windows height is∆, then number of combinations thatn cells could have is(∆ + 1)
n, which should satisfy the following:

(∆ + 1)
n
≥ lk (10)

So the windows height should be∆ =
⌈

l
kÁn − 1

⌉

.

Then the rewritten timesT of the multiple cells case is:

T =

⌊

q − 1
⌈

l
kÁn

⌉

− 1

⌋

(11)
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