New rewriting schemes for MLC flash memory

Luoming Zhang, Amin Shokrollahiellow, IEEE

Abstract

MLC flash memory is a non-volatile memory, in which the cells can be injecti¢ldl éifferent numbers of electrons. The
unique characteristics of asymmetric writing/erasing operation and limit wf@rasing cycles of flash memory make the erasing
operation expensive in terms of the lifetime of flash memory. We presaatv rewriting scheme to increase the writing operations
between two consecutive erasing operations by making better usage dfidhge levels in the cells. The scheme can get better

rewritten times without expensive modifications to the normal flash mem@tyitecture.

I. INTRODUCTION

LASH memory is a non-volatile memory that can be both elealty programmed and electrically erased. There are
F two major types, NOR and NAND, differentiated by the matrtrustures of storage units [1]. In recent years, the
NAND flash memory has been experiencing a revolutionary [dpmeent in the storage area because of the continuing gcalin
in the cost per GByte, especially by using Multiple Level IE€MLC) [2]. Our paper will mainly focus on NAND MLC flash
memory. In the following, flash memory means NAND MLC flash noeynif not mentioned otherwise.

The unique characteristics of flash memory, such as lomtgtéOPS and low power consumption lead to the increasing
potentials of the application in both consumer and entegpsiystems. However, the limited rewriting endurance offldeh
memory, which is typicallyl0* for MLC flash memory, greatly slows its adoption to all theratge architectures. Moreover,
depending on different workloads, the lifetime of the flasbrmory is greatly reduced. According to Micron’s datashte,
newest product RealSSD C400 with a capacity of 128GB agtirs only a capacity of 72TB that can be written under the
assumed conditions [3]. This is almost a reduction by a fastd5 given that the program/erase cycle for MLC celld (4.
Therefore, how to prolong the lifetime of flash memory is a togic nowadays.

There have been many works done on the storage system leweptove the endurance of flash memory based Solid State
Device (SSD). One of the main directions is using hybridagerarchitecture using HDD and SDD. Soundararagaral. [4]

used HDD as write cache for SDD which could save writes to SPDab0% in order to prolong the lifetime of SSD. The
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other direction is trying to balance the writes to SSD on pageblock levels, called wear leveling technique [5]. In lfilas
memory, there is an intermediate layer called Flash Tréinsldayer (FTL), which functions as an indirect mappingvibe¢n
the Logical Block Address (LBA) and Physical Block Addre®BA). The generic structure of FTL is the Log-StructureceFil
system (LSF), in which several parameters of the basic tparanits such as write times, validity and so on [6]. Based o
these parameters, the write to the device are pointed tetseftequent written units, so as to average the write frezjes of
the whole operation units in flash memory. The lifetime ofHlasemory could be effectively extended, by jointly considgr
the workloads, wear leveling policies and garbage cohectiolicies [7]-[10]. However, these schemes have a drakviieat
the lifetime of flash memory is extended by sacrificing theualkctapacities of the devices. As Hd al. [11] analyzed, even
considering the static and dynamic workloads, these schenay suffer write amplification as high as 3 in some cases.

On the other hand, some researchers work on the data refatizerin flash memory to make the write-constraint flash
memory to be “write-free” devices. These works were firspired by Rivest and Shamir [12]. They modeled some memories
as Write-Once Memory (WOM), which means the basic storage amild only transit to “1” state from “0” state but not
vice versa. The WOM codes use a group of these basic unitsptesent the data of several variables which could be
freely transited from “1” state to “0” state and vice vershpugh the times of changing (rewriting) the variables maybe
limited. People are trying to maximize the number of vagabhnd the rewriting times by using the limit number of theibas
storage units [13]-[18]. Meanwhile, people try to design M/@odes with error-correcting capability [19]-[21]. Retlgn
Jianget al. [22] developed floating codes. Floating codes not only cadderalize the WOM codes, but more important,
they could achieve very high rewritten times for two or thv@eiables. Even though, floating codes are not perfect sekem
such as the complicated mapping scheme prevent practicatlieny and decoding the variables. We are trying to solveehe
problems by using a so-called water-filling scheme.

In the following of this paper, some fundamentals of flash mgnwill be given in section Il, besides a simple example of
the new scheme. And in section Ill, we will formulate the vmgt and reading operation of the new scheme. The scratched
implementation of our scheme will be given at the end of thetige. At last, performance analysis will be evaluated by

comparing our scheme with other schemes.

Il. FUNDAMENTALS AND A SIMPLE CONSTRUCTION

In this section, we will first introduce some fundamentalswoiking principles in flash memory. Later, we will explaireth
motivation of our new scheme. Before ending the section, Wegive a simple example to show the initial motivation and

how it works for our new scheme.
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Fig. 1. A simple example of water-filling scheme. The write coisn2, the size of the variable is 2 , the charge level of theise}l , and then cells.

A. Fundamentals of Flash memory

In flash memory, the floating-gate transistor is the basicage unit [1], [2]. The transistor is also called cell. By ngi
hot-electron injection mechanism or the Fowler-Nordhaimnieling mechanism, the charge (i.e. electrons) are tthjppéoro-
grammed) or released from (erased) the floating gate of eglthThe charge could be measured by some discrete levels of
voltage, called thresholds. The charges can be trappecifigating gate without powering on, which makes flash memory a
non-volatile memory. The combinations of various measear@mesults from several cells are used to represent the wdlu
variables (data). The operation of trapping (or releasigrge is called writing (or erasing), while the measureanoérihe
charge levels is called reading. The flash cells are arraimgdte matrix-like structures, which are called blocks.ideseach
block, there are pages, which are the elementary writinding granularities in flash memory. Every page, usuallytaios
2kB cells to store data, and is extended with additionalespates, called metadata. In order to keep the low latencyguty
and increase the cell density of flash memory, it has a uniaeacteristic that the erasing operation is based on blatiie
the writing operation is based on pages. Meanwhile, thes ¢elle limited program/erase cycles which typically @8 times
for single level cells (SLC) and0* times for MLC. This brings great challenges when using flagimary to design SSD. For
instance, in the primitive operation, it's necessary teserthe whole block and then rewrite it again except the targhtif
there is just an update of the data stored in the cell. Thisadip@ will induce huge inefficiency not only on the writiegasing
operations, but also greatly reduce the lifetimes of otleisdn the same block. There are various ways that could loe an
have been done to exploit the capacity of inefficient openatiin order to prolong the lifetime of SSD. In this paper, we a
going to exploit the capacity of the MLC cells from the angfedata representations so as to extend the lifetime of flash

memory.



B. Motivation

In the traditional scheme, flash memory usually erases eddb &&ll after each write and don’t care which charge level of
the cell it was written. This is not efficient in term of usirggtcharge level to represent data (variable values), bedhaescell
will get erased even if the cell is only charged to the lowestl. Jianget al. designed floating codes by carefully changing
the cell charge level when updating the variable valuesatiflg codes achieved great improvement on the rewritteestim
Nothing is perfect. Floating codes have some drawbackst,Rlie mapping between the cells’ states and variable vafue
complicate, especially when the number of variables is ntloa@ three, which make the reading of data very hard; Second,
it is necessary to have the knowledge of the exact chargésle¥eaall the cells during reading the variable values even fo
small number of variables, which brings more routing comipjein the physical layer when parallel reading thousanfls o

cells; Third, according the updating rules of floating cqodesch write could only change the value of one variable.

C. A simple example

In order to solve the problems, we proposed a new data repetgs scheme. Here is the simple example of the scheme
in the case of using one cell to represent data. As usual, ahiable value is represented by the charge level of the gell i
the example. If the value is binary, then one charge leveh@igh to differentiate the two states of the variable. Ld€fine
the comparatively low charge level to denote 0 while the togle to 1. After every write, we count the write time starting
from the latest erasing operation of the cell and store thetsoin the metadata of the page. When there is a new writing
operation, the charge level of the cell increase to the eéédevel which depends on the writing counts and the new value
the variable. For instance, if the previous write count jsthe charging target level will be+ 1 if the new variable is 1, the
level will be ¢ if the new variable is 0. When there is a reading operationsytstem first read the write counts stored on the
page and the use the corresponding detecting thresholdtéotdbe charge level of each cell whether it's high or low and
interpret the corresponding variable value. Fig. 1 showesekample where the write count is two.

In the new scheme, the charge levels are keeping increafiergemery write and the differences of charge levels betwee
the neighboring cells are limited, like a shifting windowswing towards the highest charge level. We jointly use weiteints
and windowed charge levels of the cells to represent thabigrivalue. The updating rule of cells’ states in the new mehe
is like filling the water into the containers and the averaggewlevel inside the container is increasing after evengewso

we name it the water-filling scheme.



IIl. WRITING AND READING OF THE WATER-FILLING SCHEME

In this section, the general writing and reading schemehwiliven. At first, we will introduce some definitions to féteite
our description. Then we will describe how the water-filliagheme works for the case that the variable values are stored
in one cell. And later, we will extend the one cell case to thatiple cells case. At last, we will discuss some practical

implementation issues about the water-filling scheme.

A. Definitions

In order to reduce the ambiguity in description as much asiples we follow the same definitions in Jiang’s work [23] if
there are overlaps.

Definition 1:

We usen cells of ¢ charge levels to storé variables of alphabet size Meanwhile, we usél’ to denote the rewritten
times in terms of how many writing operations between twoseantive erasing operations ahdo denote the write counts
beginning from the latest erasing operation on the cell,refiec {1,2,--- T} . If ¢; denotes the actual charge levé,
denotes the relative charge level, anddenotes the variable value, then afterrites:

o (c1,00,++,¢4), €{0,1,--- ,¢—1}" denotes the state of flash memory with cells;

o (di,ds, -+ ,dy), €{1,2,---,A}" denotes the relative charge level to the lowest charge lavevery write forn cells,

where A is called the highest window height ef cells;

o (vi,vo,--,vp), €{0,1,--- 1 — 1}’“ denotes the values d@f variables.

According the unique characteristic of flash memory; ¥ p, and the state of the flash momory after thié andpth write
is (6/170/2, e ’C;L)q and (c1, ¢z, , c,) respectively, them; > ¢;,i € {1,2,--- ,n}.

Definition 2:

We usef, and f; denote the writing function and the reading function of thetew-filling scheme, and then they could be

defined as following:

fu : (017027' t ;Cn)t,1 — (017027 e 7Cn)t (1)

fd:(cl7027"' )C’n)t—)(vl7’v27"'7vk)t (2)

B. Single cell case

From the example given in section Il, we could summarizegiples of the water-filling scheme:



Fig. 2. The transition diagram for Water-filling scheme= 1, k = 1 andl = 4). The number inside the circle is the charge level; aside itoteds the

corresponding binary value of the variable.

1) The write counts are recorded and updated after every vgitiperation;
2) The consecutive windows share one frame (charge level);
3) Givenn,k and!, the height of the shifting window in terms of charge levets the same in every writing operation,
i.e. equal toA + 1;
4) The basis charge level of every writing operation, i.e thedst charge level of all the possible states of the cell, is
determined by write count, which I8 x (¢t — 1).
Fig. 2 is the transition diagram for water-filling scheme whe= 1, £k = 1 and!/ = 4. We can see the windows height
is 3 and every variable is freely transited to all the possi@riables in every write. The scheme could make full usdge o
the charge levels so as to increase the rewrite times. Mergthe consecutive rewriting operation shares one chargg by

jointly use the write counts. For the specified case in Figev2ry write of variables of alphabet size 4 only needs tociase



3 charge levels.
In the case of one cell data representation, the variablgesahre represented by the charge levels in one window of the
cell. In order to include all the possible combinations ofiafles, the necessary number of unique charge levels wilfb
for each write. So the height of window should not be lowemntkg i.e. A 4+ 1 > [*. The writing function for one cell case
is as following:

(Ci)t = fu ((U’i)ﬁt) =A X (t - 1) + m((vz)t) 3)

Wherem(-) is a bijective function between the variable values and éietive charge levels. Reading operation is detecting
the relative charge levels in the cell. Before detectingriidative charge level from the cell, the basis charge levedat up
with the knowledge of the write coutit Then several thresholds of charge levels are added to #is tlsarge level to detect
the relative charge valugl;),.

Once the relative charge level of the cells is known, thealde values could be demapped. The reading function for one

cell case is as following:

(i), = fa ((di),) = m™" ((di),) 4

Wherem~1(-) denotes the reverse function of(-).

For the single cell case, it's obvious that the maximum reeemi timesT is as below:

o[-l

We found the rewritten times are exponentially decreasihngmthe number of variables increases. To solve this prgblem

we extend the water-filling scheme from data representdtjonne cell to jointly using multiple cells.

C. Multiple cells case

In the Multiple cells case, the variable values are jointlyred in a group of cells. The principles of writing and reegfor
the multiple cells case are similar to the single cell cagegpt that the mapping function between the relative chéegel
and variable value becomes more complex. We set height cftifitng windows in all cells to be equal th considering the
maximum rewritten timed" is decided by the cell with the fastest rising of charge levelthe group, though the windows
height of each cell in the group could be different. Let's Ug¢-) denote the bijective mapping from the relative charge level
array to variable values ant/ —!(-) denote the demapping function. Then the writing and reafiingtion could be changed
as below:

(¢i), = fu (V1,02 o) t) = Ax (t—1)+ M ((v1,v2- -+ ,0k),) (6)



(vi)t = fd ((d17d27’ o 7dn)f,) = M71 ((d17d27' o 7dn)t) (7)

Under such writing and reading mechanism, the write tifhies as below:

aas

The detailed proof could be seen from the appendix.

D. Implementation issues

One of the advantages of the water-filling scheme is thatriieimentation of the scheme could be applied to the normal
flash memory without lots of changes. Let's scratch the maanges as below:

1) First, we need reserve several bits on the page metadsdat@istore the write counts. According to equation (5) and
(8), the necessary bits is less thiag, (¢ — 1);

2) Then, we need some bytes on the system level to store thegimgaables ofn (-) or M (), and also store the demapping
tables ofm =1 (-) or M~1(.).

- Writing operation:
According to the writing function specified in equation (3)da(6), the write count is read out and used for calculating
the basis charge level for next write, itex Aif the previous write cout i3 — 1 and the shifting windows height iA.
The corresponding relative charging level of each cell aleutated by the mapping tables of (-) or M (-). The target
programming charge level of each cell is the addition of #lative charging level and the basis charge level. Once the
programming of all the cells completes, the write count Wwél updated at the end of the writing operation.

- Reading operation:
According to the reading function in equation (4) and (7), mexd to detect the relative charge level of each cell by
[log, (A 4 1)] detections and then use the demapping table to decode tlblearalues. Considering the writing disturb
caused by over charging [24], the detection charge levalldhme one level higher than the tested threshold. By cdyeful

designing the demapping tables, it is possible to read oriabla value from each detection.

IV. PERFORMANCE ANALYSIS

The water-filling scheme could increase the rewritten tiofedtash memory cells under comparatively low complexity evhi
make the scheme very efficient in prolonging the lifetime atfi memory based SSD and practical to implement. We are

going to discuss the performance of the scheme from the tepeewritten times, writing efficiency and reading comptex



« Rewritten times
From (8), the Rewritten times are determined gyl and n, given the constant charge levelshat the cells could be
programmed. In the binary variable case,lie 2, the write time is determined bl andn actually. It implies that there
is a tradeoff between the capacity and the lifetime of thehfla@mory device: 17, > 1, which means the capacity is
larger than the number of cells, the lifetime becomes sho@Qthervise, vice versa.
Compare to floating codes, the water-filling scheme couldaggtroximately equal or more rewritten times, especially
for small £, I andn which is more practical for application. In [22], it is saidet write time of changing one bit of the

variable that could get by using floating codes is as follgwin

=11+ | 5] ©

Whenn = 1, k = 1 andl = 4, which is the case of single cell, floating codes could ngtij rewritten times. Considering
that it takes two write to change the whole value of variabie, rewritten times of the variable a#Lé’%lJ. According
to (8), the water-filling scheme could g@fg—lj rewritten times of changing variable values, which actu@l better in
someq values.
Whenn = 2, k = 3, and] = 2, the water-filling scheme could g@ﬂg—lj rewritten times of changing variable values,
which is the same as floating codes.

« Writing efficiency
Flash memory is programmed by means of the Incremental Stise Programming (ISPP) [25]. The target programming
threshold of each cell is reached by small voltage stepshwdpplied to the gate of the cell. The higher target programmi
threshold of the cell it is, the more voltage steps it needgéeh the target which leads to longer programming time. So
in the range of a page programming, the programming time tisraéned by the cell with highest target threshold in the
normal flash memory. In the water-filling scheme, the prognamy time is determined by the windows height, which is
usually lower than the highest charge level that the cellddcoeach. So the programming of the page could be faster
(more efficient) than the normal flash memory by using the mfdtimg scheme.

o Reading complexity
In the water-filling scheme, the reading operation only et relative charge level of the cell given the write counts
is known on the system layer. Compared to the normal flash menrofloating codes, where the absolute charge level
of the cell is needed, the bit width that needed to representharge level becomes shorter in the water-filling scheme.
This brings more reduction on the routing complexity in thggical layer of flash memory. We could have faster reading

speed by using the water-filling scheme.
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Generally speaking, it's possible to get improvement on lifetime, writing efficiency and reading speed through the

water-filling scheme.

V. CONCLUSION

In the paper, we proposed a new rewriting scheme which coetighbuse the charge levels of the cells to represent data. By
jointly increasing the charge levels of a group of cells,Hlasemory could get approximately optimal rewritten timeoider
to get longer lifetime. The average charge levels of thesaalld reach as high as possible before the cells get ergedtie
new scheme is quite efficient in using the charge levels toessmt data. Meanwhile, by using the write count mechanism,

the writing and reading operation could become faster tlmmal flash memory schemes.

APPENDIXA
PROOF OF THEREWRITTEN TIMES FOR MULTIPLE CELLS CASE
As described in section Ill, we use the combinations of wagioharge levels in several cells to represent the varialeyv
So the number of the whole combinations (states) shouldrigerdhan the total size of the variables. Let's assume wenuse

cells of ¢ charge levels to represehtvariables of alphabet size Since thek variables are independent, so the total size of

variables isl®.

According to the writing principles, the basis charge lewél increase the same level for all the cells after everytevrif

the windows height i\, then number of combinations thatcells could have i$A + 1)", which should satisfy the following:

(A+1)" >k (10)

So the windows height should b — [z/ - 1].

Then the rewritten time& of the multiple cells case is:

q—1
T=|—F—— 11
\jl% I 1J (11)
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