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Abstract—We consider ensembles of binary linear error cor-
recting codes, obtained by sampling each column of the generator
matrix G or parity check matrix H independently from the set of
all binary vectors of weight d (of appropriate dimension). We in-
vestigate the circumstances under which the mutual information
between a randomly chosen codeword and the vector obtained
after its transmission over a binary input memoryless symmetric
channel (BIMSC) C is exactly n times the capacity of C, where n
is the length of the code. For several channels such as the binary
symmetric channel (BSC) and the binary-input additive white
Gaussian noise (AWGN) channel, we prove that the probability
of this event has a threshold behaviour, depending on whether
n/k is smaller than a certain quantity (that depends on the
particular channel C and d), where k is the number of source
bits. To show this, we prove a generalization of the following well-
known theorem: the expectation of the size of the right kernel of
G has a phase transition from 1 to infinity, depending on whether
or not n/k is smaller than a certain quantity depending on the
chosen ensemble.

I. INTRODUCTION

The development of the theory of modern codes over the
past two decades has resulted in the construction of practical
error correcting codes that operate extremely close to the per-
formance limits dictated by information theory. These modern
codes admit low complexity decoding techniques based on the
idea of belief propagation. It has been shown that the ensemble
of low density parity check (LDPC) codes and Raptor codes
are capacity achieving over the binary erasure channel (BEC).
Roughly speaking, the BEC is an idealized channel in which
information symbols (bits) are either “lost”, or recovered
with no error, which may be used to model for example a
packetized communication system with perfect error detection.
However, most practical channels also involve errors, causing
information symbols to be confused with one another. When
one moves away from the framework of the BEC to more
general memoryless symmetric channels, very few analytical
results exist regarding the performance of modern coding
ensembles. The goal of this paper is to investigate such results
from an information theoretic point of view.

We consider the transmission of a vector X ∈ Fk2 over a
general binary input memoryless symmetric channel (BIMSC)
C. The vector X is transformed by a linear encoder into a
vector Y ∈ Fn2 through the mapping Y = XG, with the
“generator matrix” G ∈ Fk×n2 (note that we are not assuming
that n ≥ k, so G is not a generator matrix in traditional sense).
The vector Y is then transmitted over the channel C, to obtain

Z. We will consider the case that the encoder G corresponds to
a family of “LT/Raptor-like” or “LDPC-like” codes. In order
to make this notion more precise, we define Ed(`,m) to be the
ensemble of all ` ×m matrices whose columns are sampled
independently from the set of vectors v ∈ F`2 of weight d. For
brevity, we will use the notation Ed for the ensemble Ed(`,m),
the dimensions will be clear from context. Further, we will call
an ensemble of codes to be d-uniform if either the generator
matrix of the code or the parity check matrix of the code
is drawn from Ed. We will be interested in evaluating the
performance of such d-uniform ensembles of codes.

For this setting, the primary question that we would like to
answer is the following: under the assumption of long block-
lengths, what is the probability that the mutual information
I(X;Z) is close to n times the capacity of the channel C?
For a particular d-uniform ensemble of codes, we define the
probability

Πd,C = Pr{I(X;Z) < nCap(C)}.

For reasons of analytical tractability, we also define the fol-
lowing probability

Π̂d,C = Pr{I(X;Z) < nCap(C)− o(n)}.

We conjecture that the mutual information exhibits the follow-
ing phase transition.

Conjecture 1: For any BIMSC C and any integer d, there
exists a positive real number θ(d,C) such that if n/k converges
to a value η as n→∞, then

Π̂d,C →

{
0 if η < θ(d,C)
1 if η > θ(d,C)

.

In the current work, we attempt to prove this conjecture for
a few important and practical classes of channels, including
the binary symmetric channel (BSC) and the additive white
Gaussian noise (AWGN) channel. In certain cases, we will
prove a weaker version of Conjecture 1, by showing that Πd,C

converges to 0 if n/k is below a certain threshold. In the most
general case of an arbitrary BIMSC, the proof of Conjecture 1
remains an open problem.

It is very informative to look first at the case where the
channel C = I is the trivial (error-free) channel, such that Z =
Y . In this case, it is easy to see that the mutual information
I(X;Z) = rk(G), where rk(G) denotes the rank of the matrix



d α(d, I) θ(d, I)
3 0.8894928741 0.9179352769
4 0.9671474457 0.9767701646
5 0.9891624451 0.9924383911
6 0.9962283325 0.9973795526
7 0.9986504364 0.9990637586

TABLE I
VALUES OF α(d, I) AND θ(d, I) FOR VARIOUS d

G. Hence in this case, we have that Πd,I = Pr{rk(G) < n}.
Using the union bound, one can show that

Pr{rk(G) < n} ≤ E[|lker(G)|]− 1, (1)

where lker(G) denotes the left kernel of the matrix G. We
have the following well-known result on the phase transition
behavior of the size of the left-kernel, see [3, Theorem 3.5.1].

Theorem 1: Let the generator matrix G be drawn from the
ensemble Ed, with d ≥ 3. Further, let α(d, I) be defined as
the first component of the vector (a, x, λ) that is the unique
solution of the system of equations

e−x cosh(λ)
(

ad

ad− x

)a
= 1,

x

λ

(
ad− x
x

)1/d

= 1,

λ tanh(λ) = x.

Suppose that k, n → ∞ such that n/k → α. Then, if
α < α(d, I), then E[|lker(G)|] → 1, and if α > α(d, I), then
E[|lker(G)|]→∞.

Notice that this immediately yields that Πd,I → 0 if α <
α(d, I), but only yields a trivial bound on Πd,I if α > α(d, I).
The following theorem from [5] proves Conjecture 1 for the
case C = I.

Theorem 2: Let

γd := − ln ζd
d(1− ζd)d−1

,

where ζd is the smallest root of z(1− ln z)− 1−z
d ln z − 1 =

0 for z ∈ [0, 1]. Then Conjecture 1 is true for C = I and
θ(d, I) := γd. In other words, if n, k → ∞ such that n/k →
α and α < θ(d, I), then Π̂d,I → 0, whereas Π̂d,I → 1 if
α > θ(d, I).

Table I gives values of θ(d, I) and α(d, I) for various d.
Finally, we would like to comment on literature related to

the topic of this paper. The results that are closest to the spirit
of those in this paper are the ones in [1]–[3], [5]; one can
think of these results as special cases of our results when the
channel C is error-free.

There is a whole set of other papers that discuss under which
conditions I(X;Z) = k, so that ML-decoding is successful1.
The most general among such results (but with a limited range

1For G to achieve capacity, we need to have that I(X;Z) = k; however,
we are interested in this paper in the case when I(X;Z) = nCap(C). These
two quantities are equal only if k = nCap(C), so that the rate of the code is
equal to the capacity.

of applicability) are those of MacMullan and Collins [6] which
analyze the inherent gap of certain families of binary linear
codes such as the Hamming and Golay codes to the capacity
of the BSC. For ensembles of sparse matrices the question
of achievability of capacity is not new, of course. Already in
his thesis, Gallager [7, pp. 37–38] showed that the rate of
a right (or check-) regular LDPC code that achieves reliable
communication over a BSC using ML decoding is bounded
away from the capacity of the channel by a function depending
on the right degree of the underlying graph. In particular, the
right degree has to go to infinity if the code is to approach
capacity. Richardson et al. [8] proved that the same conclusion
holds for the maximum right degree, if the graph is not right-
regular; this implies that the result also applies when taking the
average right degree, instead. Burshtein et al. [9] generalized
these results to general BIMSC. These results were themselves
generalized and optimized by Sason and Urbanke [10] who
gave rather close gaps to capacity for LDPC codes with given
average right degree.

Though it may seem to a reader that this paper is investigat-
ing a similar problem as those of the above papers, this is not
entirely the case. In all the above cases, either k− I(X;Z) is
calculated directly (e.g., in [6]), or an upper bound is obtained
on the entropy H(Z) to show that I(X;Z) is bounded away
from k (as is the case in [7]–[10]). For us a direct calculation
of k − I(X;Z) is very difficult, so that the results of [6] are
not directly applicable. Moreover, we are interested in lower
bounds for H(Z) (or rather, its expectation), rather than upper
bounds, so the mentioned results are not applicable either.

II. THE CASE C = BSC(p)

In this section, we study the case of a BSC with crossover
probability p, denoted by C = BSC(p). The main theorem of
this section is the following.

Theorem 3: Let Bw denote the number of words of weight
w in the right kernel of the matrix G. Then

Pr[I(X;Z) < nCap(C)] ≤ log2

(
n∑

w=0

E[Bw](1− 2p)2w
)
.

Note that if we assume C = I, so that p = 0, then I(X;Z)
is the rank of the matrix G, and

∑
w Bw is the size of the

right kernel of G. Hence, the statement of the theorem says
that Pr[rk(G) < n] ≤ log2(E[|lker(G)|]) ≤ E[|lker(G)|] − 1,
and we have retrieved (1).

To prove Theorem 3, we need an auxiliary result, which
may be interesting in its own right.

Theorem 4: Let D be a distribution on Fn2 , with entropy
H(D), and let pu := PrD[x = u]. For v ∈ Fn2 let qv :=∑
u,〈u|v〉=1 pu, where 〈u | v〉 is the scalar product of u and v

(over Fn2 ). Then we have

n−H(D) ≤ log2

∑
v∈Fn2

(1− 2qv)2

 .



Proof: We will first remark some general facts. First, note
that

1−2qv = 1−qv−qv =
∑
u

〈u|v〉=0

pu−
∑
u

〈u|v〉=1

pu =
∑
u

(−1)〈u|v〉pu,

so that the vector (1−2qv | v ∈ Fn2 ) is the Hadamard transform
of the vector (pu | u ∈ Fn2 ). Let H be the 2n × 2n-Hadamard
matrix. Since H/

√
2n is a unitary matrix, we have∑

u∈Fn2

p2
u =

1
2n
∑
v

(1− 2qv)2. (2)

Note that by the concavity of the logarithm function, we have
for all x1, . . . , xm ≥ 0 and all a1, . . . , am ≥ 0 with

∑
i ai =

1:
log2(

∑
i

aixi) ≥
∑
i

ai log2(xi).

Specializing to m = 2k, and au = xu = pu, we see that∑
u p

2
u ≥

∏
u p

pu
u = 2−H(D), so that

−H(D) ≤ log2

∑
u∈Fn2

p2
u

 = −n+log2

∑
v∈Fn2

(1− 2qv)2

 ,

which is the statement of the theorem.
We omit the proof of the following corollary for lack of space.

Corollary 1: Suppose that C is an [n, k]-code, and that
y = (y1, . . . , yn) is a vector chosen from C uniformly
at random. Moreover, suppose that for i = 1, . . . , n the
random variables ξi are independent binary Bernoulli random
variables with Pr[ξi = 1] = pi, and suppose that y, ξ1, . . . , ξn
are independent. Let z = (z1, . . . , zn) be the vector with
zi = yi + ξi. Then we have

n−H(z) ≤ log2

∑
c∈C⊥

∏
i

ci=1

(1− 2pi)2

 ,

where H(z) is the entropy of the probability distribution of
the random variable z. In particular, if all the pi are equal to
p, then

n−H(z) ≤ log2

(
n∑

w=0

Bw(1− 2p)2w
)
,

where Bw is the number of words of weight w in the right
kernel of G.
The proof of Theorem 3 follows from the previous corollary.
For lack of space, we confine ourselves to providing a sketch
only.

Proof: (Of Theorem 3 - Sketch) Let C be the code
generated by the rows of the matrix G. Then, by the previous
corollary, we have

n− E[H(Z)] ≤ E

[
log2

(
n∑

w=0

Bw(1− 2p)2w
)]

.

Since log2(x) is a concave function, we have for any random
variable U over the positive real numbers: E[log2(U)] ≤
log2(E[U ]), hence it suffices to prove that

Pr[I(X;Z) < nCap(C)] ≤ n− E[H(Z)].

Let u be a random variable taking values in the set
{0, 1, . . . , t}, and let pi denote the probability that the value
of u is i. Then Pr[u < t] = p0 + · · · + pt−1 = 1 − pt ≤
pt−1 + 2pt−2 + · · ·+ tp0 = t− E[u]. We apply this result to
u = I(X;Z) and t = nCap(C) to obtain that the probability in
question is upper bounded by nCap(C)−E[I(X;Z)]. Noting
that I(X;Z) = H(Z)−H(Z|X) = H(Z)− nh(p), and that
Cap(C) = 1− h(p), the result follows.

The inequality of Theorem 4 cannot be improved since it is
tight for flat distributions. In other words, if D is a uniform
distribution over a k-dimensional subspace of Fn2 , where 1 ≤
k ≤ n, then equality is achieved.

Using the above results, we obtain the following theorem
whose proof is omitted for lack of space.

Theorem 5: Let d ≥ 3 be fixed and C = BSC(p). Define

f(λ) :=
ed

λ tanh(λ)
cosh(λ)d/λ tanh(λ)

(
tanh(λ)

e

)d
(1−2p)2,

g(λ, φ) := cosh(λ)
(

tanh(λ)
e

)λ tanh(λ)(
dφ

dφ− λ tanh(λ)

)φ
.

(
dφ− λ tanh(λ)
λ tanh(λ)

(1− 2p)2
)λ tanh(λ)/d

,

and

u(φ) =
1
2

1−
(

1 + e−2φd

2

)(1− 1
φ )
 .

Let 1/θ0 be the maximum of f(λ) in the interval (0,∞),
and let θ1 be the largest positive value of φ such that
g(λ, φ) ≤ 1 for all λ with λ tanh(λ) ≤ dφ. Also, let θ2
be the maximum value of φ ≥ 0 such that u(φ) < p. Set
α(d,C) := min (max(θ0, θ1), θ2). Suppose that n, k go to
infinity such that n/k → α. Then

Πd,C → 0 if α < α(d,C).

The case d = 2 is more involved. In fact, we cannot
show that α(2,BSC(p)) exists. However, it was proved in [4]
that in this case the analogous threshold for Π̂2,BSC(p), viz.,
θ(2,BSC(p)) exists and

θ(2,BSC(p)) =
1

2(1− 2p)2
.

Moreover, when d = 2, one can show that the largest value of
function f(λ) is equal to 1

2(1−2p)2 and happens when λ→ 0.
Table II gives the value of Cap(BSC(p))α(d,BSC(p)) =

(1−h(p))α(d,BSC(p)) for various d and p. One would expect
these values to converge to 1 as d grows. While this is seen
to happen for p� 1 (see also Table I that corresponds to the
limiting case of p = 0), the values converge to around 1/2



d \ p 10−4 10−3 0.01 0.1 0.2 0.4 0.45
3 0.889 0.881 0.837 0.680 0.590 0.496 0.488
4 0.959 0.959 0.910 0.728 0.617 0.510 0.500
5 0.979 0.979 0.928 0.738 0.623 0.512 0.503
6 0.989 0.979 0.938 0.738 0.626 0.513 0.503
7 0.989 0.989 0.938 0.743 0.626 0.513 0.503
8 0.989 0.989 0.938 0.743 0.626 0.513 0.503
9 0.999 0.989 0.938 0.743 0.626 0.513 0.503

10 0.999 0.989 0.938 0.743 0.626 0.513 0.503

TABLE II
THE VALUES OF (1− h(p))α(d, BSC(p)) FOR VARIOUS VALUES OF d AND

p.

when p converges to 1/2. This suggests that there is room for
improvement in the bounds of Theorem 5.

It can be shown that the results for the BSC also extend
to results for the convex combination of BSCs. Details are
omitted for brevity.

III. THE AWGN CHANNEL

We now turn our attention to the case when C = AWGN(ρ)
is a binary input (real) AWGN channel, whose output Z ∈ Rn
may be written as

Z = Y +W,

where W ∼ i.i.d. N
(

0, 1
ρI
)

. We assume standard binary
phase shift keying (BPSK) modulation for transmission over
the AWGN channel, i.e., we map component-wise the binary
codeword Y 7→ (−1)Y prior to transmission over the channel.
With a slight abuse of notation, we refer to both the binary
codeword and the modulated symbols with the same notation
Y ; the one being referred to will be clear from the context.
Hence ρ denotes the signal to noise ratio (SNR) of the AWGN
channel. As before, we first develop an upper bound on the
mutual information between the input and output.

I(X;Z) = H(Z)−H(Z|X)

= H(Z)− 1
2

log
(2πe)n

ρn
. (3)

Using Jensen’s inequality, we lower bound the entropy as

H(Z) ≥ − log
[∫

p2(Z) dZ
]
, (4)

where p(Z) denotes the pdf of the output Z. Define the code
CY =

{
Y = XG

∣∣X ∈ Fk2
}

, {Y1, Y2, . . . , Y2k} (note that if
G is not full-rank, then not all Yi are distinct). Then, we may
write

p(Z) =
1
2k

2k∑
i=1

ρn/2

(
√

2π)n
e−

ρ
2 |Z−Yi|

2
.

We may hence evaluate∫
p2(Z) dZ =

ρn

22k(2π)n

∫ 2k∑
i,j=1

exp
{
−ρ

2
[
|Z − Yi|2

+|Z − Yj |2
]}

dZ

A simple manipulation yields

∫
p2(Z) dZ =

ρn

(2π)n22k

2k∑
i,j=1

∫
exp

{
−ρ

2

[
|Yi − Yj |2

2

+2
∣∣∣∣Z − Yi + Yj

2

∣∣∣∣2
]}

dZ

=
(ρπ)n/2

(2π)n22k

2k∑
i,j=1

exp
{
−ρ

4
|Yi − Yj |2

}
. (5)

From (3), (4) and (5), we obtain

I(X;Z) ≥ − log

(e
2

)n/2 1
22k

2k∑
i,j=1

exp
{
−ρ

4
|Yj − Yi|2

} .
Since BPSK modulation is used, |Yj − Yi|2 = 4dH(Yj , Yi),
where dH(A,B) denotes the Hamming distance between A
and B. Since we employ a linear code, we may further
simplify the above inequality to obtain

I(X;Z) ≥ − log

(e
2

)n/2 1
2k

2k∑
i=1

exp {−ρ wH(Yi)}

 ,
where wH(X) denotes the Hamming weight of X . If we define
Cw to be the number of codewords with Hamming weight w,
we may rewrite the above as:

I(X;Z) ≥ − log

[(e
2

)n/2 1
2k

n∑
w=0

Cwe
−wρ

]
. (6)

In order to examine Conjecture 1 for C = AWGN(ρ), we
evaluate

Pr{I(X;Z) < n(Cap(C)− ε)} ≤

Pr

{
− log

[(e
2

)n/2 1
2k

n∑
w=0

Cwe
−wρ

]
< n(Cap(C)− ε)

}

= Pr

{(√
e

2
2Cap(C)−R

)n n∑
w=0

Cwe
−wρ > 2nε

}
, (7)

where ε is a constant independent of n, k. An analysis of
the term S , bn

∑n
w=1 Cwe

−ρw, where b =
√

e
22Cap(C)−R

is a constant that is independent of n leads to the following
theorem.

Theorem 6: Let d ≥ 3 be a fixed constant, and C =
AWGN(ρ). Define

f(λ, θ) = ln

[
b

θ
θ−1

(
edθ

(θ − 1)λ tanhλ

)λ tanhλ
d

]
−ρλ tanhλ

d

+ ln coshλ+ λ tanhλ ln
(

tanhλ
e

)
(8)



and

g(λ, θ) ,
d

λ tanhλ
ln

[(
tanhλ
e

)λ tanhλ

b
θ
θ−1 ·

(θd)
θ
θ−1

(
d θ
θ−1 − λ tanhλ

)λ tanhλ
d − θ

θ−1
coshλ

(θ − 1)
θ
θ−1 (λ tanhλ)

λ tanhλ
d

− ρ. (9)

Let θ1 (θ2) denote the maximum value of θ for which the
function f(λ, θ) (respectively, g(λ, θ)) is less than zero for
all non-negative λ such that λ tanhλ ≤ dθ

θ−1 . Set θ(d,C) =
min {1,max{θ1, θ2}}. If n, k →∞ such that n/k → α, then

Π̂d,C → 0 if α < θ(d,C).

Proof: (Sketch) In order to analyze Cw, we consider two
scenarios. When n ≥ k, we use a good channel code to
transmit information across the channel. On the other hand,
when n < k, we need to compress (quantize) the information
to be sent over the channel. We first examine the case when
n ≥ k.

1) Channel coding when n ≥ k: We define our channel
coding ensemble in the following manner. Choose the parity
check matrix H ∈ F(n−k)×n

2 from the ensemble Ed. The
quantity Cw is equal to the number of vectors with weight
w in the right kernel of H , or in the left kernel of HT. Along
the lines of the proof of Theorem 3.5.1 in Sec. 3.6 of [3],
we analyze S by splitting the sum into three regions, S1 =
bn
∑

1≤w<δn Cwe
−ρw, S2 = bn

∑
δn≤w<(1−δ)n Cwe

−ρw and
S3 = bn

∑
(1−δ)n≤w≤n Cwe

−ρw, where δ → 0. We outline
the analysis of these terms in the sequel, omitting details for
lack of space.

a) Analysis of S1: From the proof of Lemma 3.5.1 in
[3], we can show that S1 ≤ ε′, for some δ > 0, where ε′ > 0
is an arbitrary constant.

b) Analysis of S2: Define θ = n/k. Along the lines of
the analysis in [3], it can be shown that S2 vanishes if for all
non-negative λ such that λ tanhλ ≤ dθ

θ−1 , either f(λ, θ) < 0
or g(λ, θ) < 0, where the functions f and g are as defined in
(8), (9).

c) Analysis of S3: Along the lines of the proof of
Lemma 3.5.2 in [3], we can show that S3 → 0 when we
set ε ≥ log2

(√
e
2

)
bits.

2) Compression (Quantization) for n < k: We fix G to be
any k×n binary matrix that is of rank n. Hence, as X varies
over all k-tuples, Y varies over all n-tuples, with each n-tuple
appearing 2k−n times in the quantizer codebook. This results
in Cw = 2k−n

(
n
w

)
. Consider

bn
n∑

w=0

Cwe
−ρw = bn2k−n

n∑
w=0

(
n

w

)
e−ρw

= bn2k−n
(
1 + e−ρ

)n
.

We may now evaluate (7) as

Pr{I(X;Z) < n(Cap(C)−ε)} ≤ Pr
{
b2

k
n−1(1 + e−ρ) > 2ε

}
.

d \ ρ(dB) -8 -7 -5 -4 -2 0 3 10
3 0.221 0.288 0.485 0.618 0.923 1 1 1
4 0.313 0.425 0.775 1 1 1 1 1
5 0.527 0.784 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1

TABLE III
THE VALUES OF CAP(AWGN(ρ))θ(d,AWGN(ρ)) FOR VARIOUS VALUES

OF d AND ρ.

It can be show that if one sets ε ≥ log2

(√
e
2

)
, the right-hand

side converges to zero.
Shown in Table III are the values of

Cap(AWGN(ρ))θ(d,AWGN(ρ)) for several values of ρ
and d. Notice that the bounds for the case of the AWGN
are very tight in terms of the threshold values for the rate
being almost at capacity for even moderate values of d.
However, our main theorem for the AWGN, Theorem 6 is in
some sense weaker than the corresponding result for the BSC
in Theorem 5, since the former proves a statement about
Π̂d,C involving a linear back-off from capacity, while the
latter shows a result relating to Πd,C with no back-off from
capacity.
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