
Progress Report
September 14 to October 3, 2010

Raj K. Kumar, Amir Hesam Salavati
E-mail: raj.kumar@epfl.ch, hesam.salavati@epfl.ch

Supervisor: Prof. Amin Shokrollahi
E-mail: amin.shokrollahi@epfl.ch

Algorithmics Laboratory (ALGO)
Ecole Polytechnique Federale de Lausanne (EPFL)

October 4, 2010

1



1 Introduction

2 Brief Overview of Hopfield Networks

A Hopfield network is a complete graph with n nodes (neurons) in which
links are weighted and each node can have a binary state (±1) [1]. If weights
are carefully chosen, Hopfield networks are able to ”memorize” a number of
patterns with length n. Here, memorizing means if we do a training phase,
memorized patterns are stable states of the network, i.e. if we feed one of
them the network does not evolve. Furthermore, in certain types of Hopfield
networks, we can achieve some degree of error correction. In these cases, the
network converges to the closest memorize pattern (stable state) for a given
input. We will get back to these types later on.

In traditional Hopfield networks, if we denote the state of node k by xk,
the weights between nodes i and j, wij, is determined as follows:

wij =
1

n

∑
m = 1Mxm

i xm
j (1)

where xm
i is the ith bit, i.e. state of the ith neuron, for the mth memorized

pattern and M is the total number of such patterns.
Given the weights, neurons update their state according to equation (2).

In words, each neuron calculates the weighted sum over its input links and if
the sum was larger than a threshold θ (which can vary over time in general),
neuron fires, i.e. its state is changed to +1, and remains silent otherwise.

xi =

{
1,

∑n
j=1 wijxj > θ

0, Otherwise
(2)

2.1 Capacity of Hopfield Networks

In original Hopfield networks, patterns are selected randomly and the goal
is to memorize as many such random patterns as possible so that correct
recall is guaranteed (with probability 1). In other words, we are interested
in maximizing M such that we are able to correctly recall all M random
patterns with probability one.

It is shown that in this setup, Hopfield networks are able to memorize
at most Mmax ∝ n/ log(n) patterns (with error correction capability of less

2



than or equal to n/2 errors in the input pattern) [5]. Without error correction
requirement, the maximum number of patterns is Mmax ' .14n.

Comparing the above values with the number of codewords decoder with
n codebits can ”memorize”, i.e. 2k = 2rn, we see that original Hopfield
networks are totally inefficient from storage point of view. However, this
inefficiency is not a result of the network structure but mostly because of the
assumption that the memorized patterns are chosen completely at random.
At this point, an interesting issue to consider is to investigate the gain we
get in terms of storage capacity if we choose the memorized patterns not
completely at random, but carefully such that they have a relatively big
minimum distance. For instance, we could select the codewords of an LDGM
code as the set of patterns to be memorized. The question would then be how
many such patterns we can safely store without causing recall errors? In the
following sections, we try to take the first steps in answering this question.

Another interesting subject is to investigate dynamical behavior Hopfield
networks when the weights are not determined according to equation (1) but
drawn randomly from a given ensemble. What is interesting is to see how
network evolves for a set of biologically-meaningful ensembles. In particular,
we would like to see if network can achieve certain degree of error correction
in these cases. We will partly address this issue in a later section.

3 Hopfield Networks with Larger Minimum

Distance

In this section, we consider a Hopfield networks in which weights are de-
termined according to equation (1) and patterns are drawn from an LDGM
code with node degree distribution (Λ(x), Ω(x)), i.e. Λi is the number of
left (message) nodes with degree i and Ωj is the number of right (codeword)
nodes with degree j.

The goal is now to see how many such patterns we can safely store with
guaranteed correct recall. There are two different issues that we should
consider. The first is that all codewords must be stable states of the network,
i.e. if we give one of them as input, the network should not evolve to another
state. The next issue is if the proposed method can achieve error correction
as well, i.e. if we provide an erroneous input, can the network converge to
the closest stable state?

3



To address the above issues, we have to investigate the probability that a
neuron fires in any iteration. Let z(r) denote the probability that a generic
neuron (say neuron i) fires at round r. In other words:

z(r) = Pr{xi = 1 in round r} = Pr{
n∑

j=1

wijxj > θ, in round r} (3)

Our approach is based on analyzing z(r) as given by equation (3) to see how
it is related to pattern properties. By conditioning on the number of neurons
that fired in previous rounds and rewriting equation (3) we obtain a recursive
expression for z(r) as follows:

z(r) = Pr{
n∑

j=1

wijxj > θ, in round r}

=
n∑

k=0

Pr{
n∑

j=1

wijxj > θ, in round r—k neurons fired in round (r-1)} × Pr{k neurons fired in round r-1}

=
n∑

k=0

(
n

k

)
z(r − 1)k(1− z(r − 1))n−k Pr{

k∑
j=1

wij −
n∑

j=k+1

wij > θ} (4)

In which for simplicity we have assumed that neurons 1, ..., k fired in the
previous round.

To calculate Pr{
∑k

j=1 wij −
∑n

j=k+1 wij > θ} in equation (4), we must

obtain the probability distribution for the sums of form
∑k

j=1 wij. If wij’s
are i.i.d. Gaussian random variables, then the sum would also be Gaussian.
Although it seems that Gaussian assumption is not that unrealistic from a
biological point of view1, it is not necessarily valid in our case. Hence, we
must either find the probability distribution of wij’s or approximate the sum
using central limit theorem in which case we need the mean and variance of
wij.

Determining the probability distribution of wij is somehow straightfor-
ward if we assume different codewords to be independent of each other. Then,
all we need to do is to compute the distribution of xm

i xm
j and do convolution

M times. As it will be seen later on, the probability distribution of xm
i xm

j is
close to uniform.

1We will address this case in the next section

4



However, computing the distribution of wij is a cumbersome task. In-
stead, we use central limit theorem to estimate it as a Gaussian random
variable with mean µ and variance σ2. In appendix A, we provide a way to
obtain µ and σ2 from code properties.

Having assumed that wij’s are i.i.d. N(µ, σ2) random variables, equation
(4) simplifies to:

z(r) =
n∑

k=0

(
n

k

)
z(r − 1)k(1− z(r − 1))n−k Pr{

k∑
j=1

wij −
n∑

j=k+1

wij > θ}

=
n∑

k=0

(
n

k

)
z(r − 1)k(1− z(r − 1))n−kQ

(
θ + (n− 2k)µ√

kσ

)
(5)

In which Q is the well-known Q-function.

4 Numerical analysis

Equation (5) provides us with a means to analyze dynamical behavior of
Hopfield networks. For instance, if we assume the all −1 codeword was given
to the network, the probability of error at round r equals to z(r). If the
input pattern does not contain any errors, i.e. z(0) = 0, then z(r) = 0,∀r >
0. Hence, the network is able to correctly recall this pattern if there are
no errors. On the other hand, if we assume a fraction ε of input bits are
erroneous, then we have z(0) = ε and we can track z(r) recursively. Ideally,
we would like to see z(r) vanishes for reasonable values of ε.

In figures below...

5 Hopfield Networks with Biologically Mean-

ingful Weight Distributions

So far, we have considered the case where we have selected input patterns
from codewords of an error correcting code. In this section, we consider
the other extreme, i.e. we do not determine network weights according to
equation (1) but assume a biologically meaningful weight distribution and
investigate the behavior of the network in this way. The goal is to see if
network can perform error correction in this case.

5



Brunel et al. [?] have considered a perceptron, which is a n-to-1 network.
During the training phase of a perceptron, patterns of n bit are given to the
network and an output is also fixed. The perceptron should memorize the
relationship between input bits and the output bit by adjusting its weights
according to the input patterns. In this regard, perceptron is identical to a
Hopfield network except for an ”output” bit which determines if recall was
correct or not. In this setup and without error correction, a perceptron is
able to memorize at most Mmax ' .14n patterns, which is exactly the same
number as that of a Hopfield network.

Brunel et al. have investigated the weight distribution of a perceptron at
its maximum capacity and shown that the weight distribution is composed
of two parts: a big dirac delta function at zero, meaning that a large number
of weights are identical to zero, plus a rectified-Gaussian distribution with
negative mean and a variance which depends on network parameters. By
rectified here we mean that the Gaussian part is limited to positive values,
i.e. inhibitory neurons are not considered. The authors have shown that
their finding is compatible with biological findings.

However, other recent papers show that the weight distribution in neu-
ronal networks in general follow a log-normal distribution [?]. In this report
though, we only consider the first case and try to analyze the network be-
havior in this case.

5.1 Mixed-Gaussian Ensemble analysis

Following the results of [?], we assume weights to be i.i.d. random variables
distributed according to:

fw(x) = αδ(x) +
β√

2πΣ2
e−

(x−γ)2

2Σ2 u(x) (6)

In which α and β are normalization constants, γ is the mean of the Gaussian,
Σ is its variance and u(x) is the step function.

6



Appendix

A Computing Expectation and Variance of

Weights

Recall from equation (1) that wij = 1
n

∑M
m=1 xm

i xm
j . In other words, for a

given codeword, we multiply the ith and jth bit and do a summation over all
codewords to obtain wij. As a result:

µ = E[wij] =
M∑

m=1

E[xm
i xm

j ] (A1)

To calculate E[xm
i xm

j ] we have to obtain P1 = Pr{xm
i xm

j = 1}. Denoting
Pr{xi ⊥⊥ xj} by Pind we obtain:

P1 = Pr{xm
i xm

j = 1}
= Pind × (Pr{xm

i = 1}Pr{xm
j = 1}Pr{xm

i = −1}Pr{xm
j = −1})(A2)

+ (1− Pind)× (Pr{xm
i xm

j = 1|xi and xj are dependent}) (A3)

Where two codewords xi and xj are independent if they do not share a
common message bit. Note that when xi and xj are independent, then
Pr{xm

i = 1} = Pr{xm
j = 1} = .5 (assuming uniform message probabil-

ity). Furthermore, even if xi and xj are dependent, the probability that their
product is equal to 1 would still be .5 unless they share exact set of message
bits, i.e. we have redundant equations in constructing the code.

To determine the probability of dependence between two code bits, we
consider an LDGM code with node degree distribution (Λ(x), Ω(x)). We
construct the ensemble by considering E = Λ′(1) = Ω′(1) sockets on both
sides of the graph and picking two sockets, one from left and one from right
side, uniformly at random in each iteration and connecting them. We repeat
this process E times until no socket is left. Finally, if two nodes are connected
an even number of times to each other, we consider them as unconnected. In
the next subsection, we determine the probability that a message node with
degree ` and a check node with degree r are connected ro each other.

7



A1 Connection Probability Between a Message and a
Check Node

Let pr
`(s) denote the probability that a message node with degree ` is con-

nected to a codebit with degree r at round s of constructing the code graph.
If we indicate the expected number of message bit (code bit) sockets

which was selected in previous s rounds by α(s) (β(s)), then a simple line of
reasoning shows that the following recursive solution identifies pr

`(s):

pr
`(s) = pr

`(s− 1)(1− `− α(s− 1)

E − (s− 1)

r − β(s− 1)

E − (s− 1)
)

+ (1− pr
`(s− 1))

`− α(s− 1)

E − (s− 1)

r − β(s− 1)

E − (s− 1)
(A4)

and pr
`(1) = `

E−(s−1)
r

E−(s−1)
. Lemma 1 shows that α(s+1) = `s

E
and β(s+1) =

rs
E

.

Lemma 1. Defining α(s) and β(s) as the expected number of sockets selected
from the a given message and codeword node in previous s rounds (not in-
cluding round s), we find out that α(s + 1) = `s

E
and β(s + 1) = rs

E
, where `

and r are the degrees of the message and codeword node respectively.

Proof. We use induction to prove the lemma. For brevity, we only consider
the message bit as the same proof applies to the set of right nodes without
any major changes.

In the first iteration, we know that α(1) = 0 and α(2) = 1×Pr{being selected}+
0× (1− Pr{being selected}) = `/E, which satisfies the induction invariant.

Now suppose the induction holds for some s and we would like to show
it also holds for s + 1. The procedure is given below:

α(s + 1) = α(s)× Pr{No socket being selected in round s+1}
+ (1 + α(s))× Pr{A socket being selected in round s+1}
= α(s) + Pr{A socket being selected in round s+1}

= α(s) +
`− α(s)

E − s

=
`(s + 1)

E

which proves the lemma.

8



Plugging the result of lemma 1 into equation (A4), we can derive the
closed from relationship for pr

`(s), as given in theorem 2.

Theorem 2. Define pr
`(s) to be the probability that a message node with de-

gree ` is connected to a code node of degree r at round s of graph construction.
Then:

pr
`(s) =

1−
(
1− 2`r

/
E2
)s

2

Proof. We use induction to prove the theorem. In the first round, the proba-
bility of being connected simply is pr

`(1) = `r/E2. Hence, induction invariant
is valid for s = 1.

Now suppose the invariant holds for some s. We would like to show that
it also holds for s + 1. Following equation (A4) we have:

pr
`(s + 1) = pr

`(s)(1−
`− α(s)

E − (s)

r − β(s)

E − (s)
)

+ (1− pr
`(s))

`− α(s)

E − (s)

r − β(s)

E − (s)

= pr
`(s)(1−

`r

E2
) + (1− pr

`(s))(
`r

E2
)

= pr
`(s)(1− 2

`r

E2
) +

`r

E2

=
1−

(
1− 2`r

E2

)s+1

2

which proves the theorem.

Theorem 2 provides us with necessary tools to calculate the probability
that two right nodes are dependent. Consider two right nodes with degrees ri

and rj respectively. The probability that a left node is connected to both of
these nodes at the end of the construction process is pri

` (E)× p
rj

` (E). Hence,
the probability that two code nodes do not share any message node, and
hence are independent, is:

Pind =

1−
∑

`

∑
ri

∑
rj

(
Λ`

k
)(

Ωri

n
)(

Ωrj

n
)pri

` (E)× p
rj

` (E)

k

9



=

1−
∑

`

∑
ri

∑
rj

(
Λ`

k
)(

Ωri

n
)(

Ωrj

n
)
1−

(
1− 2`ri

E2

)E
2

1−
(
1− 2`rj

E2

)E

2


k

(A5)

Where k is the number of message nodes.
Now what is the probability that two nodes share the same set of message

bits? The probability that two right nodes with degree r share the same
message node with degree ` is pr

`(E)2. Hence, on average, the probability
that two right nodes with degree r share a left node is P =

∑
`

Λ`

k
pr

`(E)2.
As a result, the probability that they share all their r nodes together is P r.
Finally, the probability that any two right nodes have the same degree and
share the same set of message bits is:

Predun =
∑

r

(
Ωr

2
)2

(
k

r

)
P r

=
∑

r

(
Ωr

2
)2

(
k

r

)(∑
`

Λ`

k
pr

`(E)2

)r

(A6)

Combining the results of equations (A2), (A5) and (A6) we see that:

P1 = .5Pind + (1− Pind)(1× Predun + .5× (1− Predun))

= .5 + .5(1− Pind)Predun

Having P1 we can calculate the expectation of xm
i xm

j , and hence wij which
would be:

µ = E[wij] =
1

n

M∑
m=1

E[xm
i xm

j ] =
1

n

M∑
m=1

(1× P1 + (−1)× (1− P1)) =
M

n
(2P1−1) =

M

n
(1−Pind)Predun

(A7)
The same line of reasoning can also apply to calculate variance of wij. If

we assume different codewords to be independent of each other, then:

E[w
2
ij] =

1

n2

M∑
m=1

E[(xm
i xm

j )2] =
1

n2

M∑
m=1

(1× P1 + (1)× (1− P1)) =
M

n2
(A8)

And hence σ2 = E[w
2
ij]− µ2 = M−(M(1−Pind)Predun)2

n2 .

10



References

[1] J. J. Hopfield, ”Neural networks and physical systems with emergent
collective computational abilities”, National Acad Science, 1982.

[2] C. Berrou, V. Gripon, ”Coded Hopfield Networks”, Proc. Symposium
on Turbo Codes and Iterative Information Processing, pp. 15, 2010.

[3] V. Gripon, C. Berrou, ”Sparse Neural Networks with Large Learning
Diversity”, Submitted to IEEE Transaction on Neural Networks.

[4] D. She, J. B. Cruz, ”Encoding Strategy for Maximum Noise Tolerance
Bidirectional Associative Memory”, IEEE Transactions On Neural Net-
works, Vol. 16, No. 2, 2005.

[5]

11


