
1

Analysis of the Second Moment of the LT Decoder
Ghid Maatouk, Student Member, IEEE, and Amin Shokrollahi, Fellow, IEEE

Abstract—In this paper, the second moment of the ripple
size during the LT decoding process is analyzed. The standard
deviation of the ripple size for an LT code with length k is shown
to be of the order of

√
k. Together with a result by Karp et. al

(2004) stating that the expectation of the ripple size is of the
order of k, this gives bounds on the error probability of the
LT decoder. Further, an analytic expression for the variance of
the ripple size up to terms of constant order is given, and the
expression of Karp et. al for the expectation of the ripple size
is refined up to terms of the order of 1/k. This provides a first
step towards an analytic finite-length analysis of LT decoding.

Index Terms—LT decoder, second moment, ripple, finite-length
analysis.

I. INTRODUCTION

We start with a brief introduction to Fountain codes, LT
codes and belief propagation (BP) decoding. For details, the
reader is referred to [1], [2].

LT codes belong to the class of Fountain codes. A Fountain
code generates, given a set of k input symbols, a potentially
infinite stream of output symbols z1, z2, . . ., where each
output symbol is produced independently from the addition
of some subset of the input symbols, chosen according to a
distribution on Fk

2 . We assume that the symbols can be either
bits or binary vectors, and that there is a way for the receiver
to know, for each output symbol, which input symbols it
is produced from. A number of such ways are described in
[1]. A good Fountain code is one for which the receiver
can decode the k input symbols with high probability after
collecting n output symbols, with n close to k.

Such codes are well-suited for reliable transmission of data
packets over the Internet. The Internet can be modeled as an
erasure channel, where each packet is either lost, discarded
or delivered to the receiver. Fountain codes are well adapted
for many transmission scenarios, such as the existence of
multiple receivers on one or multiple channels. Then each
receiver can recover the k input symbols independently of the
other receivers, as soon as it has gathered n output symbols.
Good Fountain codes operate close to capacity for any erasure
channel.

LT codes are universal Fountain codes [1] in that the
decoding process can recover with high probability a set of
k input symbols from n output symbols with n arbitrarily
close to k. LT codes have the following distribution for

This research was supported by Grant 228021-ECCSciEng of the European
Research Council.

The authors are with the School of Computer and Communications
Sciences, EPFL, 1015 Lausanne, Switzerland (email: {amin.shokrollahi,
ghid.maatouk}@epfl.ch).

generating output symbols: for each output symbol, first
sample a number d (the “degree” of this symbol) from a
distribution Ω = (Ω1, · · · ,Ωk) on the integers 1, . . . , k. Then
pick d distinct input symbols uniformly at random and XOR
them to produce the corresponding output symbol. An LT
code that encodes k input symbols and uses a distribution
Ω with generating function Ω(x) =

P
i Ωix

i is said to have
parameters (k,Ω(x)).

LT codes are decoded using BP decoding. The decoding
starts when the receiver has gathered n = (1 + ε)k output
symbols, for some predetermined overhead ε. Define the
decoding graph [2] to be an undirected bipartite graph with
k nodes on one side, representing the k input symbols, and n

nodes on the other, representing the output symbols. An input
node is connected to an output node if the corresponding
input symbol contributes to the value of the output symbol.
The decoding process is as follows: if the receiver can find
an output symbol connected to only one input symbol, then
the value of this input symbol can be recovered directly. This
value is XORed to the value of any other output symbols
connected to this input symbol, then the input symbol and all
its outgoing edges are removed from the graph. The decoder
then repeats the operation by finding another output symbol
connected to only one input symbol. If at any stage before
the recovery of all symbols, no such output symbol is found,
the decoder reports an error.

An important set to consider is the set of output symbols
of degree 1 (the ripple). The size of the ripple varies during
the decoding process, as high-degree output symbols become
of degree 1 after the removal of their edges, and as ripple
elements become useless after the recovering of their unique
neighbor. The decoding is in error if and only if the ripple
becomes empty before all the input symbols are recovered. A
natural question is thus whether we can track the size of the
ripple, in the expectation, during the decoding process. Karp
et al. [3] proved that the expected ripple size is linear in k

throughout most of the decoding process. Their asymptotic
analytic expressions for the expected ripple size can be
found in section II. They also derive an expression for the
expected cloud size throughout decoding, where the cloud is
defined at each decoding step as the set of output symbols
of degree strictly higher than 1. We are interested in the
cloud size inasmuch as the cloud “feeds” the ripple during
the decoding process, as higher-degree symbols lose edges.
Thus, expressions for the expectation and higher moments of
the ripple size depend on the corresponding expressions for
the cloud size.

In this paper, we extend the analysis of [3] in two ways.

2

First, we consider higher moments of the cloud and ripple
size in order to upper bound the error probability of the LT
decoder. More specifically, we use similar methods to derive an
expression for the variance of the ripple size and prove that it
is also linear in k throughout most of the decoding process. We
can then use this expression together with the expression for
the expectation to offer a guarantee for successful decoding,
as follows: if, for fixed LT code parameters, R(u) is the
expectation and σR(u) is the standard deviation of the ripple
size when u symbols are unrecovered, then if the function

hc(u) = R(u)− c · σR(u) (1)

for some parameter c never takes negative values, we can
upper bound the error probability of the LT decoder by the
probability that the ripple size deviates from its mean by
more than c standard deviations. This is easily done using
Chebyshev’s inequality.

Second, we take the first step towards an analytic finite-
length analysis of the LT decoder, by providing exact
expressions for the expectation (variance) of the ripple size
up to O(1/k) (constant) terms. This is done by considering
lower-order terms in the difference equations, but also
by getting tight bounds on the discrepancy introduced by
approximating difference equations by differential equations.

It is worthy to note that the expressions we deal with are
valid for “most of the decoding process,” that is, the analysis
breaks down when the number of unrecovered symbols is no
longer a constant fraction of k. This is no issue, however,
when one considers Raptor codes, which need only a constant
fraction of the input symbols to be recovered by the LT
decoder [2].

II. PRELIMINARIES - AN EXPRESSION FOR THE EXPECTED
RIPPLE SIZE

Let u be the number of unrecovered (undecoded) input
symbols at a given decoding step. Define the decoder to be in
state (c, r, u) if the cloud size is c and the ripple size is r at
this decoding step. To each state (c, r, u), we can associate the
probability pc,r,u of the decoder being in this state. Define the
state generating function of the LT decoder when u symbols
are undecoded as

Pu(x, y) =
X

c≥0,r≥1

pc,r,ux
cyr−1.

The following theorem by Karp et al. gives a recursion for
the state generating function of the LT decoder.

Theorem 1: [3] Suppose that the original code has k input
symbols and that n = k(1 + δ) output symbols have been
collected for decoding. Further, denote by Ωi, i = 2, . . . , D,

the probability that an output symbol is of degree i, where D
is the maximum degree of an output symbol. Then we have
for u = k + 1, k, . . . , 1

Pu−1(x, y) =
1

y

»
Pu

„
x(1− pu) + ypu,

1

u
+ y

„
1− 1

u

««
− Pu

„
x(1− pu),

1

u

«–
,

(2)

where for u ≤ k,

pu =

u−1
k(k−1)

PD
d=1 Ωdd(d− 1)

264 k − u
d− 2

375
264 k − 2

d− 2

375

1− u
PD

d=1 Ωdd

264 k − u
d− 1

375
264 k

d

375
−
PD

d=1 Ωd

264 k − u
d

375
264 k

d

375

,

and "
a

b

#
:=

a

b

!
b!,

and pk+1 := Ω1. Further, Pk+1(x, y) := xn.

This recursion gives a way to compute the probability of a
decoding error at each step of the BP decoding as

Perr(u) =
X
c≥0

pc,0,u = 1−
X

c≥0,r≥1

pc,r,u = 1− Pu(1, 1),

and the overall error probability of the decoder as

Perr =

kX
u=1

Perr(u).

If we approximate the LT process by allowing output
symbols to choose their neighbors with replacement during
encoding, pu becomes:

pu =
1

k
f
“u
k

”
− 1

k2
g
“u
k

”
=

1

k
f
“u
k

”
+O(1/k2),

where
f(x) :=

xΩ′′(1− x)

1− xΩ′(1− x)− Ω(1− x)
(3)

and
g(x) :=

f(x)

x
. (4)

For simplicity, the process that we analyze in what follows
is this modified LT process. Intuitively, the modified process
is “worse” than the original LT process in that it allows
for multiple, “useless” edges in the decoding graph. With
this assumption, Karp et al. [3] use the recursion to derive
difference equations for the expected size of the ripple and
the cloud, and further approximate these difference equations
by differential equations that they solve to get closed-form
expressions for the expected ripple and cloud size. Formally,
let

R(u) :=
X

c≥0,r≥1

(r − 1)pc,r,u

denote the expected number of output symbols in the ripple
when u symbols are undecoded, and let

C(u) :=
X

c≥0,r≥1

cpc,r,u

denote the expected number of output symbols in the cloud
when u input symbols are undecoded, where u is assumed to
be a constant fraction of the total number of input symbols
k. Then Karp et al. [3] derive closed-form expressions for
continuous approximations of R(u) and C(u). More precisely,

3

let x := u/k denote the fraction of undecoded symbols, and
let C(x) := C(u)/n be a normalized version of C(u). Then the
continuous function Ĉ(x) given by

Ĉ(x) = c0
`
1− xΩ′(1− x)− Ω(1− x)

´
,

with
c0 = 1− (1− Ω1)n−1 (5)

is a “good” approximation for C(x).

Similarly, let R(x) := R(u)/n be a normalized version of R(u).

Then the continuous function R̂(x) given by

R̂(x) = x

„
c0Ω′(1− x) +

1

1 + ε
lnx+ r0

«
, (6)

with
r0 = Ω1(1− Ω1)n−1 − 1− (1− Ω1)n

n
(7)

is a “good” approximation for R(x).1 Theorem 2 formalizes
this notion of a “good” approximation.

Theorem 2: [3] Consider an LT code with parameters
(k,Ω(x)) and assume n = (1+ε)k symbols have been collected
for decoding. During BP decoding, let C(u) and R(u) be
respectively the expected size of the cloud and ripple as a
function of the number u of undecoded input symbols. Then,
under the assumptions that u is a constant fraction of k and
Ω1 > 0, we have

C(u) = nĈ(u/k) +O(1)

= n
“

1− u

k
Ω′(1− u/k)− Ω(1− u/k)

”
+O(1)

and

R(u) = nR̂(u/k) +O(1)

= (1 + ε)u

„
Ω′(1− u/k) +

1

1 + ε
ln
u

k

«
+O(1).

(8)

III. AN EXPRESSION FOR THE VARIANCE OF THE RIPPLE
SIZE

Let σ2
R(u) be the variance of the ripple size as a function of

the number of undecoded symbols u. In what follows we will
always assume that u is a constant fraction of k. By definition,
σ2

R(u) is given by

σ2
R(u) =

X
c≥0,r≥1

(r − 1)2pc,r,u −R(u)2.

If we define

N(u) :=
∂2Pu

∂y2
(1, 1)

=
X

c≥0,r≥1

(r − 1)(r − 2)pc,r,u

=
X

c≥0,r≥1

(r − 1)2pc,r,u −R(u),

(9)

we can relate σ2
R(u), N(u) and R(u) as follows:

σ2
R(u) = N(u)−R(u)2 +R(u). (10)

1The expressions we present here for Ĉ(x) and R̂(x) correct some slight
typos in [3].

It is thus enough to find an expression for N(u) to get an
expression for σ2

R(u). We start by differentiating both sides
of the recursion (2) twice with respect to y and evaluating at
(1, 1). This gives us a recursion for N(u) :

N(u− 1) =

„
1− 1

u

«2

N(u)− 2puC(u)− 2

„
1− 1

u

«
R(u)

+ p2
u
∂2Pu

∂x2
(1, 1) + 2pu

„
1− 1

u

«
∂2Pu

∂x∂y
(1, 1)

− 2

»
−Pu(1, 1) + Pu

„
1− pu,

1

u

«–
.

(11)

Before we can proceed with solving this difference equation,
we need to find expressions for the second-order derivatives
∂2Pu
∂x2 (1, 1) and ∂2Pu

∂x∂y
(1, 1). We do so by following exactly the

same method that we are currently outlining for an expression
for N(u). Define

M(u) :=
∂2Pu

∂x2
(1, 1)

L(u) :=
∂2Pu

∂x∂y
(1, 1).

Then Theorems 3 and 4 gives closed-form expressions for
M(u) and L(u), respectively.

Theorem 3: Let M(x) := M(u)/n2 be a normalized version
of M(u) (where x denotes, as before, the fraction u/k of
undecoded symbols). Then

M(x) = M̂(x) +O(1/k),

where

M̂(x) = m0

`
1− xΩ′(1− x)− Ω(1− x)

´2
,

with
m0 =

„
1− 1

n

«`
1− (1− Ω1)n−2´ . (12)

Proof: See Appendix F.

Theorem 4: Let L(x) := L(u)/n2 be a normalized version
of L(u). Then

L(x) = L̂(x) +O(1/k),

where

L̂(x) = x
`
1− xΩ′(1− x)− Ω(1− x)

´
·
„
m0Ω′(1− x) +

c0
1 + ε

lnx+ l0

«
,

with
l0 =

−1

n
+ (1− Ω1)n−2

„
Ω1 +

1− 2Ω1

n

«
. (13)

Proof: See Appendix G.

As for the “dirt” term

−2

»
−Pu(1, 1) + Pu

„
1− pu,

1

u

«–
, (14)

it does not involve derivatives and we cannot use the
same method to find an expression for it independent
of the state generating function. However, we can bound

4

it under an assumption on the ripple size, as Theorem 5 shows.

Theorem 5: If r ≥ 4,

2

»
−Pu(1, 1) + Pu

„
1− pu,

1

u

«–
= O(1).

Proof: See Appendix H.

In what follows, we assume that the size of the ripple does
not go below the constant 4.2

Replacing M(u) and L(u) by their expressions and bounding
the dirt term in the recursion (11), we obtain the following
difference equation for N(u) :

N(u)−N(u− 1) =

„
2

u
− 1

u2

«
N(u)− p2

uM(u)

− 2pu

„
1− 1

u

«
L(u) + 2puC(u)

+ 2

„
1− 1

u

«
R(u) +O(1).

(15)

Note that N(u) as defined in equation (9) can be as large
as a constant fraction of k2. We thus need to normalize N(u)

if we want to say something meaningful about the difference
N(u) − N(u − 1). We let N(x) := N(u)/n2 be a normalized
version of N(u), where x denotes, as before, the fraction
u/k of undecoded symbols. Normalizing equation (15) and
replacing the functions M(x), L(x), C(x) and R(x) by their
continuous approximations, we obtain

N(x)−N(x− 1/k) =
2

kx
N(x)− 2

k
f(x)L̂(x)

+
2

(1 + ε)k
R̂(x) +O(1/k2).

Neglecting lower-order terms, we approximate N(x) by the
function Ñ(x) which satisfies

Ñ(x)− Ñ(x− 1/k) =
2

kx
Ñ(x)− 2

k
f(x)L̂(x) +

2

(1 + ε)k
R̂(x),

with initial condition Ñ(1) = N(1).

Claim 1: For any x on which N(x) is defined, N(x) and
Ñ(x) differ by a term of the order of 1/k.

Proof: See Appendix A.

We further approximate the discrete function Ñ(x) by the
continuous function N̂(x), and

Ñ(x)− Ñ(x− 1/k)

1/k

by the first-order derivative of N̂(x). N̂(x) satisfies the differ-
ential equation

N̂ ′(x) =
2

x
N̂(x)− 2f(x)L̂(x) +

2

1 + ε
R̂(x) (16)

with initial condition N̂(1) = Ñ(1).

2It is not difficult to check at the end of the analysis, and using an inductive
reasoning, that this assumption holds with high probability.

Claim 2: For any x on which Ñ(x) is defined, Ñ(x) and
N̂(x) differ by a term of the order of 1/k.

Proof: See Appendix B.

The following theorem gives the solution of the differential
equation (16).

Theorem 6: An analytic expression for N̂(x) is

N̂(x) = x2
“
m0Ω′(1− x)2 + 2l0Ω′(1− x)+

2c0
1 + ε

Ω′(1− x) lnx+
2r0

1 + ε
lnx+

1

(1 + ε)2
(lnx)2 + n0

”
,

(17)

where the constants c0, m0 and l0 are given by equations (5),
(12) and (13), respectively, and the value of the constant n0 is

n0 =
2

n2
(1− (1− Ω1)n)− (1− Ω1)n−2

„
Ω2

1 +
2Ω1 − 3Ω2

1

n

«
.

Proof: See Appendix C.

By Claims 1 and 2 we thus have

N(x) = N̂(x) +O(1/k),

where N̂(x) is given by equation (17). This gives us an
expression for N(u), up to a term of the order of k:

N(u) = (1 + ε)2u2

„
Ω′(1− u/k)2 +

2

1 + ε
Ω′(1− u/k) ln

u

k

+
1

(1 + ε)2

“
ln
u

k

”2
«

+O(k).

Comparing this expression to that for R(u)2 given by equations
(6) and (8), it is easy to see that these two expressions agree
up to terms of the order of k, so that the variance of the ripple
size

σ2
R(u) = N(u)−R(u)2 +R(u)

is of the order of k.

Theorem 7: Consider an LT code with parameters (k,Ω(x))

and let σR(u) be the standard deviation of the ripple size
throughout BP decoding. Then

σR(u) = O(
√
k).

IV. TOWARD A FINITE-LENGTH ANALYSIS OF THE LT
DECODER

Our ultimate goal is to be able to bound the error probability
of the decoder as a function of k, without the assumption that
k goes to infinity. We thus need to find an expression for the
variance of the ripple size, instead of simply determining its
order. For this purpose, we must find an expression for N(u)

up to terms of constant order, and an expression for R(u) up
to terms of the order of 1/k. We illustrate the analysis for
N(u). From the recursion given by equation (11), we proceed
by first, bounding the“dirt” term more carefully as

2

„
1− Pu(1, 1) + Pu

„
1− pu,

1

u

««
= 2 +O(1/k),

5

as the derivation in Appendix H shows. We then replace
C(x), R(x), M(x) and L(x) by finer approximations. For this,
we define the following discrepancy terms.

Definition 1: Let

dC(x) := Ĉ(x)− C(x)

denote the discrepancy between C(x) and its continuous ap-
proximation Ĉ(x) when an x-fraction of symbols is undecoded.
Similarly, let

dR(x) := R̂(x)−R(x)

dM (x) := M̂(x)−M(x)

dL(x) := L̂(x)− L(x)

denote the corresponding discrepancies for R(x), M(x) and
L(x), respectively.

Then the following theorem gives expressions for these
discrepancy terms.

Theorem 8: The discrepancy terms dC(x), dR(x), dM (x)

and dL(x) are of the order of 1/k and are given by the
following expressions:

dC(x) =
1

k2

k(1−x)−1X
i=0

Ci

k(1−x)−1Y
j=i+1

“
1− cj

k

”
+O(1/k2)

dR(x) =
1

k2

k(1−x)−1X
i=0

Ri

k(1−x)−1Y
j=i+1

“
1− rj

k

”
+O(1/k2)

dM (x) =
1

k2

k(1−x)−1X
i=0

Mi

k(1−x)−1Y
j=i+1

„
1− 2cj

k

«
+O(1/k2)

dL(x) =
1

k2

k(1−x)−1X
i=0

Li

k(1−x)−1Y
j=i+1

“
1− rj + cj

k

”
+O(1/k2),

with the constants Ci, Ri,Mi, Li and cj , rj given by

Ci = Ĉ′′(1− i/k)− g(1− i/k)Ĉ(1− i/k)

cj = f(1− j/k)

Ri = R̂′′(1− i/k) + g(1− i/k)Ĉ(1− i/k)

+kf(1− i/k)dC(1− i/k)

rj =
1

1− j/k

Mi = M̂ ′′(1− i/k)

−
`
2g(1− i/k) + f(1− i/k)2

´
M̂(1− i/k)

Li = L̂′′(1− i/k)− 2g(1− i/k)L̂(1− i/k)

+
`
g(1− i/k) + f(1− i/k)2

´
M̂(1− i/k)

+kf(1− i/k)dM (1− i/k)

− 1

1 + ε
f(1− i/k)Ĉ(1− i/k)− k

1 + ε
dC(1− i/k).

Proof: These expressions are obtained by the same
method that we are now following to obtain a more precise

approximation of N(u). For a sample derivation, see Appendix
I.

The next step is to write a recursion for N(x) which is exact
up to terms of the order of 1/k3. We then approximate N(x)

by Ñ(x) which satisfies the same recursion except that we
neglect terms of the order of 1/k3:

Ñ(x)− Ñ(x− 1/k) =

„
2

kx
− 1

k2x2

«
Ñ(x)− 1

k2
f(x)2M̂(x)

+

„
− 2

k
f(x) +

4

k2
g(x)

«
L̂(x) +

2

k
f(x)dL(x)

+
2

(1 + ε)k2
f(x)Ĉ(x) +

„
2

(1 + ε)k
− 2

(1 + ε)k2x

«
R̂(x)

− 2

(1 + ε)k
dR(x)− 2

(1 + ε)2k2
.

Claim 3: For any x on which N(x) is defined, let
d̃N (x) = Ñ(x) − N(x) denote the discrepancy introduced by
approximating N(x) by Ñ(x). Then d̃N (x) is of the order of
1/k2.

Proof: See Appendix D.

We further approximate Ñ(x) by N̂(x) which satisfies the
differential equation (16) and is given by expression (17). A
more careful analysis of the discrepancy beween N̂(x) and
Ñ(x) leads to the following claim:

Claim 4: For any x on which Ñ(x) is defined, Ñ(x) and
N̂(x) differ by a term of the order of 1/k.

More precisely,

N̂(x)− Ñ(x) = dN (x),

where

dN (x) =
1

k2

k(1−x)−1X
i=0

"
N̂ ′′(1− i/k)− 1

(1− i/k)2
N̂(1− i/k)

− f(1− i/k)2M̂(1− i/k) + 4g(1− i/k)L̂(1− i/k)

+ 2kf(1− i/k)dL(1− i/k) +
2f(1− i/k)

(1 + ε)
Ĉ(1− i/k)

− 2

(1 + ε)(1− i/k)
R̂(1− i/k)− 2k

1 + ε
dR(1− i/k)

− 2

(1 + ε)2

#
·

k(1−x)−1Y
j=i+1

„
1− 2

k(1− j/k)

«
+O(1/k2).

(18)

Proof: See Appendix E.

Let dN (x) = N̂(x) − N(x) denote the overall discrepancy
introduced by approximating N(x) by N̂(x). Clearly,

dN (x) = d̃N (x) + d̂N (x),

where d̃N (x) and d̂N (x) are as defined in Claims 3 and 4,
respectively. By these claims, we thus have

N(x) = N̂(x)− d̂N (x) +O(1/k2),

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

35

40

0%

1%

2%

3%

4%

5%

6%

7%

8%

Fraction of decoded input symbols

R
ip

pl
e

si
ze

Failure
probability

R(u)

R(u)− σR(u)

R(u)− 2σR(u)

Fig. 1. Ripple size expectation and standard deviation versus the fraction of
decoded input symbols. The solid line is the empirical failure probability of
the decoder based on 100 million simulations. It confirms that the “problem
zones” of the decoder are the ones predicted by the second moment method.

where N̂(x) is given by equation (17) and d̂N (x) by equation
(18). Using the resulting expression for N(u), and the
expression for R(u) given by Definition 1, we finally obtain
an expression for the variance of the ripple size up to terms
of constant order.

Theorem 9: Consider an LT code with parameters (k,Ω(x))

and overhead ε and let σ2
R(u) be the variance of the ripple size

throughout BP decoding. Then

σ2
R(u) = (1 + ε)u

„
Ω′(1− u/k) +

1

1 + ε
ln
u

k

«
·
`
1 + 2(1 + ε)kdR(u/k)

´
− (1 + ε)

u2

k
Ω′(1− u/k)2

− (1 + ε)2k2dN (u/k) +O(1).

Figure 1 shows a plot of the expected ripple size and the
functions h1(u) and h2(u) given by equation (1), throughout
the decoding process, for an LT code with k = 800 and ε = 0.1,

and with the degree distribution

Ω(x) =
1

1
50

+
P50

i=2
1

i(i−1)

"
1

50
x+

50X
i=2

1

i(i− 1)
xi

#
,

inspired from Luby’s Ideal Soliton distribution [1]. The plot
also shows the result of real simulations of this code, and
confirms that the problem zones of the decoder are those
predicted by the functions hi(u): the closer they are to the
x-axis, the more probable it is that the decoder fails. As can
be seen, there is a fair chance that the decoder fails when the
fraction of decoded input symbols is between 0 and 0.2, and
there is a very good chance that the decoder fails when the
fraction of decoded input symbols is close to 0.95.

V. CONCLUSION

We have given an analytic expression for the variance of
the ripple size throughout the LT decoding process. This

expression is asymptotically of the order of k, and we have
expressed it as a function of k as a first step toward finite-
length analysis of the LT decoding. The next step is to work
around the assumption that u is a “constant fraction” of k.
Then we would obtain a guarantee for successful decoding
as a function of the LT code parameters and overhead for
practical values of k. This would then allow us to solve
the corresponding design problem, namely to choose degree
distributions that would make the function hc(u) stay positive
for as large a value of c as possible, for a fixed code length k.

APPENDIX A
PROOF OF CLAIM 1

Define the discrepancy function d̃N (x) between N(x) and
its approximation Ñ(x) as

d̃N (x) = Ñ (x)−N (x) ,

where x represents the fraction of undecoded symbols at any
step in the decoding and hence takes only values that are
integer fractions of k. Recall that N(x) satisfies the recursion

N(x− 1/k) =

„
1− 2

kx

«
N(x) +

2

k
f(x)L̂(x)

− 2

(1 + ε)k
R̂(x) +O(1/k2)

and Ñ(x) satisfies the recursion

Ñ(x− 1/k) =

„
1− 2

kx

«
Ñ(x) +

2

k
f(x)L̂(x)− 2

(1 + ε)k
R̂(x),

(19)
with initial condition Ñ(1) = N(1). From the recursions for
N(x) and Ñ(x), we get that

d̃N (x− 1/k) =

„
1− 2

kx

«
eN (x) +O(1/k2).

Using this recursive expression for d̃N (x) together with the
initial condition d̃N (1) = 0, and noting that the multiplicative
term

`
1− 2

kx

´
is of constant order, we see that d̃N (x) is

bounded by a term of the order of 1/k for all x on which
N(x) is defined. �

APPENDIX B
PROOF OF CLAIM 2

Here we must bound the discrepancy d̂N (x) = N̂(x)− Ñ(x)

introduced by approximating the discrete function Ñ(x) by
the continuous function N̂(x). Recall that Ñ(x) satisfies the
recursion given by equation (19), and that N̂(x) satisfies the
differential equation

N̂ ′(x) =
2

x
N̂(x)− 2f(x)L̂(x) +

2

1 + ε
R̂(x) (20)

with initial condition N̂(1) = Ñ(1).

Using the Taylor expansion of the function N̂(x) around a
given point x given by

N̂(x− 1/k) = N̂(x)− 1

k
N̂ ′(x) +O(1/k2),

in conjunction with equations (19) and (20) gives a recursion
for d̂N (x):

d̂N (x− 1/k) =

„
1− 2

kx

«
d̂N (x) +O(1/k2).

7

This recursion, together with the initial condition d̂N (x) = 0,
implies that d̂N (x) is bounded by a term of the order of 1/k

for all x on which Ñ(x) is defined. �

APPENDIX C
PROOF OF THEOREM 6

N̂(x) satisfies the differential equation

N̂ ′(x) =
2

x
N̂(x)− 2f(x)L̂(x) +

2

1 + ε
R̂(x)

with initial condition N̂(1) = Ñ(1). The general solution
of this differential equation can be easily found by standard
methods to be

N̂(x) = x2
“
m0Ω′(1− x)2 + 2l0Ω′(1− x)+

2c0
1 + ε

Ω′(1− x) lnx+
2r0

1 + ε
lnx+

1

(1 + ε)2
(lnx)2 + n0

”
.

(21)

To find the value of the constant n0, we use the initial
condition N̂(1) = Ñ(1) = N(1). The value of N(1) can be
found by looking at the beginning of the decoding process.
N(u) was defined as

N(u) :=
∂2Pu

∂y2
(1, 1),

so that

N(u = k) =
X

c≥0,r≥1

(r − 1)(r − 2)pc,r,u=k.

When there are k undecoded symbols, the coefficients pc,r,k

are given by

pc,r,k =

(`
n
c

´
Ωr

1(1− Ω1)c if c+ r = n

0 otherwise.

Then

N(u = k) =

nX
r=1

(r − 1)(r − 2)

n

r

!
Ωr

1(1− Ω1)n−r

=
nX

r=2

r(r − 1)

n

r

!
Ωr

1(1− Ω1)n−r

−2

nX
r=1

r

n

r

!
Ωr

1(1− Ω1)n−r

+2

nX
r=1

n

r

!
Ωr

1(1− Ω1)n−r.

Now
nX

r=2

r(r − 1)

n

r

!
Ωr

1(1− Ω1)n−r

= n(n− 1)Ω2
1

n−2X
r=0

n− 2

r

!
Ωr

1(1− Ω1)n−2−r

= n(n− 1)Ω2
1.

Similarly,
nX

r=1

r

n

r

!
Ωr

1(1− Ω1)n−r

= nΩ1

n−1X
r=0

n− 1

r

!
Ωr

1(1− Ω1)n−1−r

= nΩ1,

and
nX

r=1

n

r

!
Ωr

1(1− Ω1)n−r = 1− (1− Ω1)n.

Normalizing and using the initial condition N̂(x = 1) =

N(x = 1), we get

N̂(x = 1) =

„
1− 1

n

«
Ω2

1 −
2

n
Ω1 +

2

n2
(1− (1− Ω1)n) .

Evaluating the expression for N̂(x) given by equation (21)
at x = 1, and equating it to the above expression, we get

m0Ω2
1 +2l0Ω1 +n0 =

„
1− 1

n

«
Ω2

1−
2

n
Ω1 +

2

n2
(1− (1− Ω1)n) ,

where the values of m0 and l0 were already found to be

m0 =

„
1− 1

n

«`
1− (1− Ω1)n−2´

l0 =
−1

n
+ (1− Ω1)n−2

„
Ω1 +

1− 2Ω1

n

«
.

Solving for n0, we finally obtain

n0 =
2

n2
(1− (1− Ω1)n)− (1− Ω1)n−2

„
Ω2

1 +
2Ω1 − 3Ω2

1

n

«
.

�

APPENDIX D
PROOF OF CLAIM 3

As in the proof of Claim 1, we define the discrepancy d̃N (x)

between N(x) and its approximation Ñ(x) as

d̃N (x) = Ñ (x)−N (x) .

We would like to get a finer expression for d̃N (x). To this end,
we use the recursions

N(x− 1/k) =

„
1− 2

kx
+

1

k2x2

«
N(x) +

1

k2
f(x)2M̂(x)

+

„
2

k
f(x)− 4

k2
g(x)

«
L̂(x)− 2

k
f(x)dL(x)

− 2

(1 + ε)k2
f(x)Ĉ(x)− 2

(1 + ε)k

„
1− 1

kx

«
R̂(x)

+
2

(1 + ε)k
dR(x) +

2

(1 + ε)2k2
+O(1/k3)

and

Ñ(x− 1/k) =

„
1− 2

kx
+

1

k2x2

«
Ñ(x) +

1

k2
f(x)2M̂(x)

+

„
2

k
f(x)− 4

k2
g(x)

«
L̂(x)− 2

k
f(x)dL(x)

− 2

(1 + ε)k2
f(x)Ĉ(x)− 2

(1 + ε)k

„
1− 1

kx

«
R̂(x)

+
2

(1 + ε)k
dR(x) +

2

(1 + ε)2k2

(22)

8

for N(x) and Ñ(x), respectively, to get a recursion for the
discrepancy:

d̃N (x− 1/k) =

„
1− 2

kx
+

1

k2x2

«
d̃N (x) +O(1/k3).

Together with the initial condition N̂(1) = N(1), which
implies d̃N (1) = 0, we get that d̃N (x) is bounded by a term of
the order of 1/k2 for all the values x takes during the decoding
process.

�

APPENDIX E
PROOF OF CLAIM 4

As in the proof of Claim 2, we define d̂N (x) to be the
discrepancy introduced by approximating the discrete function
Ñ(x) by the continuous function N̂(x). This time, we would
like to obtain a finer expression for d̂N (x). We will thus
consider the recursion for Ñ(x) given by equation (22), and
we will write the Taylor expansion of N̂(x) up to terms of the
order of 1/k3:

N̂(x− 1/k) = N̂(x)− 1

k
N̂ ′(x) +

1

k2
N̂ ′′(x) +O(1/k3). (23)

Recall that N̂(x) satisfies the differential equation

N̂ ′(x) =
2

x
N̂(x)− 2f(x)L̂(x) +

2

1 + ε
R̂(x).

Plugging this expression for N̂ ′(x) into the Taylor expansion
of N̂(x) and using the resulting expression in conjunction with
the recursion for Ñ(x) of equation (22) gives us a recursion
for d̂N (x):

d̂N (x− 1/k) =

„
1− 2

kx

«
d̂N (x) +

1

k2

»
N̂ ′′(x)− 1

x2
Ñ(x)

− f(x)2M̂(x) + 4g(x)L̂(x) + 2kf(x)dL(x)

+
2f(x)

(1 + ε)
Ĉ(x)− 2

(1 + ε)x
R̂(x)

− 2k

1 + ε
dR(x)− 2

(1 + ε)2

–
+O(1/k3).

This recursion can be easily seen to yield the following
closed-form expression for d̂N (x), up to a term of the order
of 1/k2 representing an accumulation of terms of the order of
1/k3 :

d̂N (x) =
1

k2

k(1−x)−1X
i=0

Ni

k(1−x)−1Y
j=i+1

“
1− nj

k

”
+O(1/k2), (24)

where nj is given by nj = 2
1−j/k

and Ni is given by

Ni = N̂ ′′(1− i/k)− 1

(1− i/k)2
N̂(1− i/k)

− f(1− i/k)2M̂(1− i/k) + 4g(1− i/k)L̂(1− i/k)

+ 2kf(1− i/k)dL(1− i/k) +
2f(1− i/k)

(1 + ε)
Ĉ(1− i/k)

− 2

(1 + ε)(1− i/k)
R̂(1− i/k)− 2k

1 + ε
dR(1− i/k)

− 2

(1 + ε)2
.

Note that we have replaced Ñ(1− i/k) by N̂(1− i/k) in the
expression for Ni; this introduces an error that is accounted for
by the O(1/k2) term in the expression for d̂N (x) in equation
(24). This is crucial in that it allows us to get an analytic
expression for the discrepancy d̂N (x) between Ñ(x) and N̂(x),

and thus for the discrepancy between N(x) and its continuous
approximation N̂(x). �

APPENDIX F
PROOF OF THEOREM 3

Recall that

M(u) =
∂2Pu

∂x2
(1, 1).

By differentiating both sides of the recursion (2) twice with
respect to x and evaluating at (1, 1), we get the following
recursion for M(u):

M(u− 1) = (1− pu)2M(u)− (1− pu)2
∂2Pu

∂x2

„
1− pu,

1

u

«
.

By a similar analysis to that of the proof of Theorem 5 (Ap-
pendix H), it can easily be shown that under the assumption
r > 5, we can bound the dirt term

(1− pu)2
∂2Pu

∂x2

„
1− pu,

1

u

«
by a term of constant order, thus obtaining the following
difference equation for M(u) :

M(u)−M(u− 1) = (2pu − p2
u)M(u) +O(1).

Normalizing by n2, we obtain a difference equation for M(x) :

M(x)−M(x− 1/k) =
2

k
f(x)M(x) +O(1/k2).

Neglecting lower-order terms, we approximate M(x) by the
function M̃(x) which satisfies

M̃(x)− M̃(x− 1/k) =
2

k
f(x)M̃(x),

with initial condition M̃(1) = M(1).

We state the following claim without proof, as its proof is
very similar to that of Claim 1.

Claim 5: For any x on which M(x) is defined, M(x) and
M̃(x) differ by a term of the order of 1/k.

We further approximate M̃(x) by the continuous function
M̂(x) which satisfies the differential equation

M̂ ′(x) = 2f(x)M̂(x)

with initial condition M̂(x) = M̃(x). The general solution of
this differential equation is of the form

M̂(x) = m0

`
1− xΩ′(1− x)− Ω(1− x)

´2
. (25)

The value of the constant m0 can be found from the initial
condition M̂(1) = M̃(1) = M(1). Looking at the beginning of

9

the decoding process, namely at the step u = k, we can see
that

M(u = k) =
X

c≥0,r≥1

c(c− 1)pc,r,u=k

=

n−1X
c=0

c(c− 1)

n

c

!
Ωn−c

1 (1− Ω1)c

= n(n− 1)

n−3X
c=0

n− 2

c

!
Ωn−2−c

1 (1− Ω1)c+2

= n(n− 1)(1− Ω1)2
`
1− (1− Ω1)n−2´ .

Normalizing, we get that

M̂(1) =

„
1− 1

n

«
(1− Ω1)2

`
1− (1− Ω1)n−2´ .

On the other hand, from equation (25),

M̂(1) = m0(1− Ω1)2.

Equating the two expressions, we finally get

m0 =

„
1− 1

n

«`
1− (1− Ω1)n−2´ .

The expression obtained for M̂(x) is a good approximation
for M̃(x), as the following claim shows. Again, we state
it without proof, as its proof is very similar to that of Claim 2.

Claim 6: For any x on which M̃(x) is defined, M̃(x) and
M̂(x) differ by a term of the order of 1/k.

APPENDIX G
PROOF OF THEOREM 4

Recall that

L(u) =
∂2Pu

∂x∂y
(1, 1).

By differentiating both sides of the recursion (2) and eval-
uating at (1, 1), we obtain a recursion for L(u) :

L(u− 1) = pu(1− pu)M(u) +

„
1− 1

u

«
(1− pu)L(u)

− (1− pu)C(u) + (1− pu)
∂Pu

∂x

„
1− pu,

1

u

«
.

Again, by an analysis similar to that of Appendix H nder the
assumption r > 4, the dirt term

(1− pu)
∂Pu

∂x

„
1− pu,

1

u

«
is of constant order, so that we have the following difference
equation for L(u) :

L(u)− L(u− 1) =

„
1

u
+ pu −

pu

u

«
L(u)− pu(1− pu)M(u)

+ (1− pu)C(u) +O(1).

Again, we seek a difference equation for the normalized func-
tion L(x). We use the approximations C(x) = Ĉ(x) +O(1/k),

M(x) = M̂(x) +O(1/k), and pu = 1
k
f(x) +O(1/k2) to obtain

a difference equation for L(x) :

L(x)− L(x− 1/k) =

„
1

kx
+

1

k
f(x)

«
L(x)− 1

k
f(x)M̂(x)

+
1

k(1 + ε)
Ĉ(x) +O(1/k2).

Neglecting lower-order terms, we approximate L(x) by the
function L̃(x) which satisfies

L̃(x)− L̃(x− 1/k) =

„
1

kx
+

1

k
f(x)

«
L̃(x)− 1

k
f(x)M̂(x)

+
1

k(1 + ε)
Ĉ(x)

with initial condition L̃(1) = L(1).

L̃(x) is a good approximation for L(x), as the following
claim (stated without proof, since its proof is similar to that
of Claim 1) shows.

Claim 7: For any x on which L(x) is defined, L(x) and
L̃(x) differ by a term of the order of 1/k.

We further approximate L̃(x) by the continuous function
L̂(x) which satisfies the differential equation

L̂′(x) =

„
f(x) +

1

x

«
L̂(x)− f(x)M̂(x) +

1

1 + ε
Ĉ(x)

with initial condition L̂(x) = L̃(x). The general solution of
this differential equation is of the form

L̂(x) = x
`
1− xΩ′(1− x)− Ω(1− x)

´
·
„
m0Ω′(1− x) +

c0
1 + ε

lnx+ l0

« (26)

where the values of c0 and m0 are given by equations (5)
and (12) respectively. The value of l0 can be found using the
initial condition L̂(1) = L̃(1) = L(1). Looking at the initial
step u = k of the decoding process, we see that

L(u = k) =
X

c≥0,r≥1

c(r − 1)pc,r,k

=

n−1X
c=0

c(n− c− 1)

n

c

!
Ωn−c

1 (1− Ω1)c.

Note that c(n − c) = c(n − 2) − c(c − 1), so that L(u = k)

becomes

L(u = k) = (n− 2)

n−1X
c=0

c

n

c

!
Ωn−c

1 (1− Ω1)c

−
n−1X
c=0

c(c− 1)

n

c

!
Ωn−c

1 (1− Ω1)c

= n(n− 2)(1− Ω1)
`
1− (1− Ω1)n−1´

− n(n− 1)(1− Ω1)2
`
1− (1− Ω1)n−2´

= n(n− 1)(1− Ω1)Ω1 − n(1− Ω1)
`
1− (1− Ω1)n−1´ .

10

Normalizing and equating to the evaluation of equation (26)
at x = 1, we can solve for l0 as

l0 =
−1

n
+ (1− Ω1)n−2

„
Ω1 +

1− 2Ω1

n

«
.

The following claim (whose proof is similar to that of
Claim 2) shows that L̂(x) is a good approximation for L̃(x.)

Claim 8: For any x on which L̃(x) is defined, L̃(x) and
L̂(x) differ by a term of the order of 1/k.

APPENDIX H
PROOF OF THEOREM 5

We will prove that 1 − Pu(1, 1) + Pu

„
1− pu,

1

u

«
can be

upper bounded by a term of the order of 1/k. To see this, note
that

1− Pu(1, 1) + Pu

„
1− pu,

1

u

«
=
X
c≥0
r≥0

pc,r,u −
X
c≥0
r≥1

pc,r,u +
X
c≥0
r≥1

pc,r,u(1− pu)c

„
1

u

«r−1

=
X
c≥0
r=0

pc,r,u +
X
c≥0
r≥1

pc,r,u(1− pu)c

„
1

u

«r−1

≤
X
c≥0
r=0

pc,r,u +
X
c≥0
r≥1

„
1

u

«r−1

=
X
c≥0
r=0

pc,r,u +
X
c≥0

r=1,...,3

„
1

u

«r−1

+
X
c≥0
r≥4

„
1

u

«3„
1

u

«r−5

.

For r ≥ 4, the first two summands vanish. As for the third
summand, it is the sum of O(k2) terms, each of them being
O(1/k3), so that their sum is O(1/k).

Thus

2

„
1− Pu(1, 1) + Pu

„
1− pu,

1

u

««
= 2 +O(1/k) for r ≥ 4.

APPENDIX I
CALCULATION OF THE DISCREPANCY TERMS OF

THEOREM 8

Here we show sample derivations of some of the discrep-
ancy terms of Theorem 8. We will present detailed calcula-
tions of the discrepancy terms dC(x) and dR(x); very similar
calculations can be carried out for dM (x) and dL(x).

A. An Expression for dC(x)

We start by the derivation of the discrepancy term dC(x)

introduced by approximating C(x) by an analytic function.
For convenience, we restate the expression we wish to obtain
in the following lemma.

Lemma 1: The discrepancy term dC(x) defined as dC(x) =

Ĉ(x)− C(x) is given by the expression

dC(x) =
1

k2

k(1−x)−1X
i=0

Ci

k(1−x)−1Y
j=i+1

“
1− cj

k

”
+O(1/k2),

where

Ci = Ĉ′′(1− i/k)− g(1− i/k)Ĉ(1− i/k)

and
cj = f(1− j/k).

Before we prove Lemma 1, we follow a procedure similar
to that of Section IV and Appendices F and G to derive a
closed-form expression for C(x) up to lower-order terms.
Through this analysis, an expression for the discrepancy term
dC(x) will naturally arise.

Recall that

C(u) =
X

c≥0,r≥1

cpc,r,u =
∂Pu

∂x
(1, 1).

Differentiating both sides of the recursion (2) with respect to x
and evaluating at (1, 1), we obtain a recursion for C(u), given
by

C(u− 1) = (1− pu)C(u)− (1− pu)
∂Pu

∂x

„
1− pu,

1

u

«
.

A simple analysis, similar to that of Appendix H, shows that
the dirt term

(1− pu)
∂Pu

∂x

„
1− pu,

1

u

«
can be bounded by a term of the order of 1/k2, for r ≥ 6.

In what follows, we thus make the assumption that the ripple
size does not go below 6, so that we can write

C(u− 1) = (1− pu)C(u) +O(1/k2).

We normalize C(u) by n in order to work with expressions of
constant order, and obtain the following difference equation
for C(x) :

C(x)− C(x− 1/k) =

„
1

k
f(x)− 1

k2
g(x)

«
C(x) +O(1/k3),

where expressions for the functions f and g are given by
equations (3) and (4), respectively.
As a first step, we approximate C(x) by the function C̃(x),

which satisfies

C̃(x)− C̃(x− 1/k) =

„
1

k
f(x)− 1

k2
g(x)

«
C̃(x),

with initial condition C̃(1) = C(1). We further approximate
C̃(x) by the continuous function Ĉ(x), which satisfies the
differential equation

Ĉ′(x) = f(x)Ĉ(x)

with initial condition Ĉ(1) = C̃(1) = C(1). The solution of
this differential equation is readily seen to be of the form

Ĉ(x) = c0
`
1− xΩ′(1− x)− Ω(1− x)

´
,

11

where the value of the constant c0 is to be determined by the
initial condition c0(1 − Ω1) = C(1). To obtain an expression
for C(1), we look at the beginning of the decoding process
and note that

C(u = k) =
X

c≥1,r≥1

pc,r,k

=

n−1X
c=1

c

n

c

!
Ωn−c

1 (1− Ω1)c

= n(1− Ω1)

n−2X
c=0

n− 1

c

!
Ωn−1−c

1 (1− Ω1)c

= n(1− Ω1)
`
1− (1− Ω1)n−1´ ,

so that

C(x = 1) = (1− Ω1)
`
1− (1− Ω1)n−1´ .

This gives us
c0 = 1− (1− Ω1)n−1.

We thus obtain an analytic approximation Ĉ(x) of C(x).

We now turn to obtaining and bounding an expression for the
error introduced by this approximation.

Proof of Lemma 1: We start by bounding the discrepancy
d̃C(x) = C̃(x) − C(x) introduced by approximating C(x) by
C̃(x). C(x) satisfies the recursion

C(x− 1/k) =

„
1− 1

k
f(x) +

1

k2
g(x)

«
C(x) +O(1/k3),

whereas C̃(x) satisfies the recursion

C̃(x− 1/k) =

„
1− 1

k
f(x) +

1

k2
g(x)

«
C̃(x), (27)

with initial condition C̃(1) = C(1). This gives a recursion for
d̃C(x), as follows:

d̃C(x− 1/k) =

„
1− 1

k
f(x) +

1

k2
g(x)

«
d̃C(x) +O(1/k3),

with initial condition d̃C(1) = 0. Noting that the multiplicative

term
„

1− 1

k
f(x) +

1

k2
g(x)

«
is of constant order, we can thus

write, for any x on which d̃C(x) is defined,

d̃C(x) = O(1/k2). (28)

We now seek an expression for the discrepancy d̂C(x) =

Ĉ(x) − C̃(x) introduced by approximating C̃(x) by the con-
tinuous function Ĉ(x). C̃(x) satisfies the recursion given by
equation (27), and Ĉ(x) satisfies the differential equation

Ĉ′(x) = f(x)Ĉ(x). (29)

We write the Taylor expansion of Ĉ(x) up to terms of the
order of 1/k3 as

Ĉ(x− 1/k) = Ĉ(x)− 1

k
Ĉ′(x) +

1

k2
Ĉ′′(x) +O(1/k3)

and plug the expression for Ĉ′(x) given by the differential
equation (29) into this expansion; together with the recursion

for C̃(x), this gives us the following recursion for d̂C(x) :

d̂C(x− 1/k) =

„
1− 1

k
f(x)

«
d̂C(x)

+
1

k2
Ĉ′′(x)− 1

k2
g(x)C̃(x) +O(1/k3).

This recursion is clearly seen to yield the closed-form expres-
sion

d̂C(x) =
1

k2

k(1−x)−1X
i=0

Ci

k(1−x)−1Y
j=i+1

“
1− cj

k

”
+O(1/k2), (30)

with Ci and cj as defined in the statement of Lemma 1. Note
that the expression for Ci is a function of Ĉ(1− i/k) instead
of C̃(1 − i/k). This introduces an error accounted for by the
O(1/k2) term in equation (30).

Putting together the expressions for the discrepancies d̃C(x)

and d̂C(x) respectively given by equations (28) and (30), we
finally obtain the closed-form expression given by Lemma 1
for dC(x) = d̃C(x) + d̂C(x).

B. An Expression for dR(x)

We follow a similar procedure to that of the previous
section to derive an analytic expression for the discrepancy
dR(x) introduced by approximating R(x) by the continuous
function R̂(x). We want to prove the following lemma.

Lemma 2: The discrepancy term dR(x) defined as dR(x) =

R̂(x)−R(x) is given by the expression

dR(x) =
1

k2

k(1−x)−1X
i=0

Ri

k(1−x)−1Y
j=i+1

“
1− rj

k

”
+O(1/k2),

where
Ri = R̂′′(1− i/k) + g(1− i/k)Ĉ(1− i/k)

+ kf(1− i/k)dC(1− i/k)

and
rj =

1

1− j/k .

Again, before we prove the lemma, we derive a closed-form
expression for R(x) up to lower-order terms.

By definition,

R(u) =
X

c≥0,r≥1

(r − 1)pc,r,u =
∂Pu

∂y
(1, 1).

Differentiating both sides of the recursion (2) with respect to
y and evaluating at (1, 1), we obtain the recursion

R(u−1) =

„
1− 1

u

«
R(u)+puC(u)−Pu(1, 1)+Pu

„
1− pu,

1

u

«
.

A similar analysis to that of Appendix H shows that the dirt
term

−Pu(1, 1) + Pu

„
1− pu,

1

u

«
can be approximated by −1 + 1/k2, for r ≥ 5. We make
this assumption in what follows and can thus work with the
following difference equation for R(u) :

R(u)−R(u− 1) =
1

u
R(u)− puC(u) + 1 +O(1/k2).

12

Normalizing R(u) by n, we obtain a difference equation for
R(x) :

R(x)−R(x− 1/k) =
1

kx
R(x)−

„
1

k
f(x)− 1

k2
g(x)

«
Ĉ(x)

+
1

k
f(x)dC(x) +

1

k(1 + ε)
+O(1/k3),

where f is as given by equation (3). Note that we replaced
C(x) by its approximation Ĉ(x) and accounted for the resulting
error.

We approximate R(x) by R̃(x), which satisfies

R(x)−R(x− 1/k) =
1

kx
R(x)−

„
1

k
f(x)− 1

k2
g(x)

«
Ĉ(x)

+
1

k
f(x)dC(x) +

1

k(1 + ε)
,

with initial condition R̃(1) = R(1), and further approximate
R̃(x) by the continuous function R̂(x), which satisfies the
differential equation

R̂′(x) =
R̂(x)

x
− f(x)Ĉ(x) +

1

k(1 + ε)

with initial condition R̂(1) = R̃(1) = R(1). The general
solution of this differential equation can be easily found by
standard techniques to be

R̂(x) = x

„
c0Ω′(1− x) +

1

1 + ε
lnx+ r0

«
,

where c0 is given by equation (5) and the value of r0 can
be determined by the initial condition c0Ω1 + r0 = R(1). For
the value of R(1), we look at the beginning of the decoding
process, as we did previously in order to derive an expression
for C(1). By the same method we obtain

R(u = k) = nΩ1 − 1 + (1− Ω1)n,

so that
r0 = Ω1(1− Ω1)n−1 − 1− (1− Ω1)n

n
.

We can now obtain an expression for the error introduced
by approximating R(x) by R̂(x).

Proof of Lemma 2: We first bound the discrepancy
d̃R(x) = R̃(x) − R(x) introduced by approximating R(x) by
R̃(x). R(x) satisfies the recursion

R(x− 1/k) =

„
1− 1

kx

«
R(x) +

„
1

k
f(x)− 1

k2
g(x)

«
Ĉ(x)

− 1

k
f(x)dC(x)− 1

k(1 + ε)
+O(1/k3),

whereas R̃(x) satisfies the recursion

R̃(x− 1/k) =

„
1− 1

kx

«
R̃(x) +

„
1

k
f(x)− 1

k2
g(x)

«
Ĉ(x)

− 1

k
f(x)dC(x)− 1

k(1 + ε)
(31)

with initial condition R̃(1) = R(1). This gives the following
recursion for d̃R(x) :

d̃R(x− 1/k) =

„
1− 1

kx

«
d̃R(x) +O(1/k3),

with initial condition d̃R(1) = 0. Since the multiplicative term„
1− 1

kx

«
is of constant order, we can write, for any x on

which d̃R(x) is defined,

d̃R(x) = O(1/k2). (32)

We now turn to finding an expression for the discrepancy
d̂R(x) = R̂(x) − R̃(x) introduced by approximating R̃(x) by
the continuous function R̂(x). The Taylor expansion of R̂(x)

up to terms of the order of 1/k3 is given by

R̂(x− 1/k) = R̂(x)− 1

k
R̂′(x) +

1

k2
R̂′′(x) +O(1/k3),

where we can replace R̂′(x) by its expression given by the
differential equation

R̂′(x) =
R̂(x)

x
− f(x)Ĉ(x) +

1

k(1 + ε)
. (33)

Using the resulting expression for R̂(x − 1/k), together with
the expression for R̃(x− 1/k) given by the recursion (31), we
obtain a recursion for d̂R(x) :

d̂R(x− 1/k) =

„
1− 1

kx

«
d̂R(x)

+
1

k2

“
R̂′′(x) + g(x)Ĉ(x)kf(x)dC(x)

”
+O(1/k3).

This recursion is easily seen to yield the closed-form expres-
sion

d̂R(x) =
1

k2

k(1−x)−1X
i=0

Ri

k(1−x)−1Y
j=i+1

“
1− rj

k

”
+O(1/k2), (34)

where Ri and rj are as defined in the statement of Lemma 2.

Together, equations (32) and (34) give us the closed-form
expression for dR(x) = d̃R(x) + d̂R(x) given by Lemma 2.

REFERENCES

[1] M. Luby, “LT Codes,” in Proceedings of the ACM Symposium on
Foundations of Computer Science (FOCS), 2002.

[2] A. Shokrollahi, “Raptor Codes,” in IEEE/ACM Trans. Netw., vol. 14,
pp. 2551–2567, 2006.

[3] R. Karp, M. Luby, and A. Shokrollahi, “Finite Length Analysis of LT
Codes,” in Proceedings of the International Symposium on Information
Theory (ISIT), 2004.

