Taken by: Bogdan Stroe
Completed by: Bogdan Stroe
Graphical Models are unifying framework for inference and learning for different applications such as Bioinformatics, speech processing, image processing, coding, and control theory. Many methods have been proposed for exact and approximate inference in graphical models. However, in most cases the exact inference is intractable and therefore the approximate inference methods are the focus of research in this area. One class of of approximate inference method is based on Linear and semidefinite programming relaxation of the problem. The aim of this project is to study and implement this method for general graphical models. Furthermore, the student should assess the performance, of this method on different datasets. The proportion of theoretical and empirical (programming, simulation) work in this project is 50-50 percent.
Requirement:
What will you learn
Suggested Readings and References