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Solution.

Exercise 1. If G,H, c and s verify the given relations we obtain the equivalence between the two
properties:

• We assume ∃x, dH(xG, c) ≤ w. This implies ∃y,wgt(y) ≤ w, xG = c + y. But, by construction
xGH = 0 hence (c+ y)H = 0 and yH = cH = s.

• We assume ∃y,wgt(y) ≤ w, yH = s. Since s = cH, we get (y+c)H=0. This implies by construction
that ∃x, xG = y + c and we get the result.

From c, it is easy to take s = cH and otherwise, we have to solve a linear system. If there is no
solution, a y will never exists so we can just take an instance of ML-DECODING that has no solution
either. The polynomial construction of G and H comes from linear algebra.

Exercise 2. To understand the reduction, you have to notice the following facts:

• Since {vi, vj}i 6=j ⊆ E, all the vi are of different colors. Hence we can assume that vi is of color i,
and we will call the extra color 0.

• The other elements in E not involving the Di implies that for all i, either ui is of color i and ui is
of color 0 or the opposite. We will interpret this by ui is 0 (in 3-SAT) iff its color is 0 (in CN).

• Since m ≥ 4, for each Df there is a i such that Df is both connected to ui and ui. So Df can
never be of color 0 and it can only be colored if one of the literal that appear in it get one of the
colors in {1, . . . , n}.

It is now easy to check that the properties are equivalent:

• From a valid assignment of 3-SAT, we color each pair (ui, ui) with colors i and 0 according to
whether ui is 1 or not. Then we color each clause Df by the color of one of the literal assigned to
1 in it (which is of color different from 0). We thus get a valid color assignment for CN.

• From a valid color assignment of CN, we interpret the value of each literal as above, and it is easy
to verify that we get a valid assignment for the instance of 3-SAT.

Exercise 3. To understand the reduction, you have to notice the following facts:

• The only way to cover V is by using for each v ∈ V a subset of the first type. We will chose the
one for which f correspond to the color associated to it in CN.

• The only way to cover E is by using for each e = {u, v} ∈ E a subset of the second type. We will
chose the one for which the colors f1, f2 corresponds to the colors associated to u and v.

It is now easy to check that the properties are equivalent:

• From a valid color assignment, we chose the subsets as described above. Amongst the elements of
X, the ones corresponding to elements of E or V appears exactly in one subset. Hence we just
have to show that it is the case for all the triplet of the form (u, e, f). But for each couple (u, e)
the triplet with f equal to the color of u appear in the set Sj covering u and all the other triplet
appear in the set Sj covering e.
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• From a valid exact cover, we get the colors of the vertices from the set Sj of the first type. It is
not possible to have an edge e = (u, v) with u and v of the same color because then the set of the
second type used to cover e has some common element with the one covering u or the one covering
v.

Exercise 4. To understand the reduction, you have to notice the following facts:

• In the formula defining U , we have two types of subsets. Only the ones of the first type have a first
coordinate in the image of α.

• In order to get a 3-DM, for a fixed j, the only way to have |Sj | elements with all possible coordinates
of the form (i, j) in the second and last positions is by using either none of the elements of the
first type or only elements of the first type. Otherwise, if we look at the second coordinates, ∃i
such that (i, j) do not appear in any elements of the first type, but π(i, j) = (i′, j) does. Then, it
is not possible to have (i, j) for a second coordinate of an element of the second type, because it
will necessarily have as a third coordinates (i′, j) which is already used by the element of the first
type having (i′, j) as second coordinate.

It is now easy to check that the properties are equivalent:

• From an exact cover, we use the elements of the first type to cover α(X) on the first coordinates
and all the (i, j) on the other coordinates with j corresponding to the Sj we use in the exact cover.
We then use the elements of the second types to get a 3-DM (we can since none of the {(i, j)} for
a fixed j partially appears as the second or last coordinates of the elements of the first type we
used).

• From a 3-DM, the j that appear as (i, j) in the last coordinates of the elements of the first type
are taken for the exact cover. From the same reason as above, if one j is taken, all the xi ∈ Sj are
taken. We then get the exact cover property for the 3-DM property on the first coordinate.

Exercise 5. A c of weight w such that cH = 0 corresponds to w rows of H whose sum (coordinates-wise
XOR) is equal to 0. In the following, by first part of H we mean the (B|It| . . . |It) part.

• from a 3-DM solution, as in the course we will take the |Z| corresponding rows of the first part of
H. The sum of all theses rows will be equal to the all 1 vector on the first 3n coordinates and will
contains 3n|Z| ones on the other coordinates. We will then take the 3n(|Z|+ 1) rows of the second
part of H to cancel all theses 1. The corresponding w will thus be |Z|+ 3n(|Z|+ 1).

• Now suppose we have a WD solution with such a w. It is not possible to have less than |Z| rows
on the first part, because the number of rows on the second part has to be exactly equals to the
number of 1 in the sum of the rows of the first part. If it is exactly |Z|, then the sum of the first
part rows is equal to the all one vector on B and a solution to 3-DM follow as in the courses. If
it is more than |Z|, then we have at least 3n(|Z|+ 1) one in the sum of the first part rows. That
means we need at least 3n(|Z| + 1) rows on the second part. But then our total weight is of at
least |Z|+ 1 + 3n(|Z|+ 1) which is 1 more than w, a contradiction.


