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Solution.

Exercise 1.

1. If we interpret each xe as 1 if the edge belongs to a matching and 0 otherwise, a feasible solution
to this linear program with the additional constraint xe ∈ {0, 1} is indeed a matching. This comes
from the fact that the condition implies that we cannot take two edges with a common endpoint.

The matrix of the linear program contain as many rows as vertices and as many columns as edges.
It is the vertex-edge incidence matrix of the graph. Since an edge connects only two vertices, each
column contains exactly 2 ones. Moreover, for a bipartite graph, we can split the lines in two parts
such that each columns contain exactly 1 one in each part.

Now, for any submatrix :

• if it contains an all 0 column, its determinant is zero.

• if all columns have two ones, we can take the sum of all the rows in the first part minus all
the row in the second part. We obtain a non-zero linear combinaison that is equal to 0 and
the determinant is still zero.

• if none of the above cases hold, then there is a column with only one 1. We can develop the
determinant according to this column and obtain plus or minus the determinant of a smaller
square submatrix. We finish the proof by induction on the size of the submatrix.

Since the matrix is totally unimodular, all the extremal points in the convex set of feasible solutions
have integer coordinates. Remark that we need the weight to be an integer to conclude this. Hence
an optimal solution exists with integer coordinates and can be found by solving the linear program.

2. The dual of this program is :

minimize
∑

v yv

subject to
∑

v,v∈e yv ≥ we ∀e ∈ E

yv ≥ 0 ∀v ∈ V.

The matrix being the transpose of the one in (1), it is still totally unimodular. If the weights are
1, a feasible solution to this program corresponds to a vertex cover since the condition implies that
each edges is adjacent to at least one vertex with yv = 1.

3. Using the duality theorem of LP, we can infer than on a bipartite graph, the cardinality of a
maximum matching is the same as the cardinality of a minimum vertex-cover.

Exercise 2. We will consider the following greedy approximation algorithm

1. Start with an empty set of edges E′ and all xe and yv equal to 0.

2. While edges with no common endpoints with edges in E′ exist, add to E′ the one e = (u, v) of
maximum weight. Set xe = 1 and set yu = yv = we.

3. return E′.
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Remark first that the algorithm returns a feasible matching. Moreover, at the end of the algorithm,
if yv is non-zero, it means we added an edge adjacent to v and so the primal complementary slackness
condition is satisfied. That is yv 6= 0⇒

∑
e,v∈e xe = 1. For each edge e we can show that

∑
v,v∈e yv ≥ we

since if we have xe = 1 we know
∑

v,v∈e yv = 2we and if xe = 0 then e = (u, v) was not selected which
implies that an edge adjacent to u or v was selected with weight greater than we.

In conclusion, the relaxed complementary slackness condition is satisfied with a factor of 2, and the
algorithm is a factor 2-approximation to the maximum weight matching in a general graph.

Exercise 3. Since Dijkstra’s algorithm computes the shortest path from s to every destination, we will
use the following primal program:

Let G = (V,E) be a directed graph, and c : E → R+ a cost function on the edges (their weight). We
will use one variable xe per edges. The problem can be formulated as

minimize
∑

e xec(e)

subject to ∀v ∈ V
∑

e=(u,v) xe −
∑

e=(v,u) xe ≥ bv

∀e ∈ E xe ≥ 0

where the bv are all 1 except bs = −n + 1. Basically, we want to send a flow of 1 from s to every node.
Hence each node consumes one unit of flow, s produce n − 1 units and xe represents the value of the
flow on the corresponding edges. If we fix one shortest path per node, it is easy to see that a solution
where xe is the number of such paths that use e is a feasible solution.

The dual program of this program is given by

maximize
∑

v 6=s yv − (n− 1)ys

subject to ∀e = (u, v) ∈ E yv − yu ≤ c(e)

∀v ∈ V yv ≥ 0

where yu has to be interpreted as the distance between s and u. We will in particular assume without
loss of generality that ys = 0.

We can then see Dijkstra’s algorithm as a primal-dual algorithm. Suppose we start with all xe equal
to 0 and all yv equal to ∞.

At each step, Dijkstra’s algorithm chooses a new node v to settle. After this operation, yv is set to
the maximum value such that all the condition of the primal involving v are satisfied. In particular, one
of the conditions gets tight. Remark that Dijkstra’s algorithm choose this node v as the one leading to
the smallest value, hence this value will always satisfy the constraint in the future. This is because all
the node settled after it will have a higher distance to s.

Moreover, we can increase by one all the xe on a shortest path from s to this settled node. The
condition associated to v becomes true, and the previous satisfied conditions of the primal program are
still satisfied.


