Introduction to Coding Theory - Spring 2009 Exercise Sheet 11

Exercise Sheet 11

(Solutions)

Exercise 11.1.

1. We have deg G(z) = 2 =: t, so the minimum distance of the code is atleast 2 -2 + 1 =
5 (as the code is binary and G(z) has no multiple roots, we have d > 2t + 1). The
dimension of the code is at least n — mt where n is the length (i.e., 8) and m is the
degree of extension where L is defined (i.e., 3). Thus, the dimension is at least 2.

2. The check matrix is

(GO G Gef)

which is, from the given field representation,
11 a2 ot o2 o o' of
01 o af a® o® o a3/’

or, in binary form,

OO OO O
OO =IO O
O R R~k OO
N e B =Y TS )
_ = RO O
= Ll =)

and from that derive the list of four codewords

(0,0,0,0,0,0,0,0)
(0,0,1,1,1,1,1,1)
(1,1,0,0,1,0,1,1)
(1,1,1,1,0,1,0,0)

Exercise 11.2.

1. The coefficient vector of A(z) can be written as

Ay 1 1 1 ap

A4 1 a~t ... a~(n=1) al
I : . : : 1)

Ay) \1 at o greneen ) \g,
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and then the coefficient vector of the transformation Y7, A(a?)z’ is defined by the

product
1 1 . 1 Ao
1 O(l R a("_l) A_1
1 a0 g ) \ 4

Thus in order to show that this produces a(z)/n, it is sufficent to verify that

1 1 . 1 1 1 o 1
1 a~ ! c. a—(n=1) 1 ot . a(n=1)

=nl,.
i a—(;m—l) o a—(n—.l)(n—l) 1 O[(n.—l) o a(n—lh)(n—l)

The entry at position (i + 1, j 4 1) of the prodct on the left hand side is

iy = n ifi—j=0
ik, —jk _ (i—j)k _ —7=0,
Za @ Za { 0 otherwise.
k=0 k=0
The claim follows.

2. This is a direct corollary of the previous part.

3. In the definition of R,(z), multiply both sides by (2" + 1) and observe that (2" + 1) =
(z+1)(z+a)---(z+a" ).

4. The left hand side has degree n while the right hand side has degree less than n. Thus,
the equivalence holds iff

n—1
2"+ 1+2H(z+ozj) = Zofijzj.
i =0

Now we multiply both sides by z + ' to obtain the equation
a'(z"+1)= (24 a) Z a2,
j=0

But the right hand side simplifies to

(2 + ai)m =(z+ ai)az;iin) =a'(1+2").
which proves the identity.
5. By part 3 we have
2(2" + 1)Ra(2) = nzl a;iz [[(z + o),
i=0 i
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which, combined with part 4, gives
n—1 n-—1 o
z2(z" + 1)Ry(2) = Z a; Z a Yz (mod 2" +1),
=0 j=0

but the right hand side is A(z).

6. We know that (ag, . ..,an—1) is a codeword iff R,(z) = 0 mod G(z). Since G(z) does
not have any o' as a root, it is relatively prime with 2" + 1. Thus (ag,...,a,—1) is a
codeword iff R,(2)(z" + 1) = 0 mod G(z). Also, 1/z = 2"~ ! mod (2" + 1). This
combined with the previous part shows the claim.

Exercise 11.3.

1. The coefficient vector of A(az) is (a®Ag,a’A_1,...,a" 1 A_,_y)), and similar to (1),
this is given by the transformation

Ao 11 ... 1 ao
aA_q o 1 ... a~(n=2) ai
an_lA—(n—l) a™l 1 .. a—(n—?)(n—l) 1
But this is the same as applying the transformation in (1) on a cyclic shift of (ao, . .., an—1),

which implies that A'(z) = A(az).

2. Becuase (ao,...,an—1) has even weight, Ay = E?:_ol a; = 0 and thus A(z) is divisible
by z, and the remainder of A(z)/z by 2" + 1 is exactly the polynomial A(z)/z. Now
we can use the result in the last part of the previous exercise to show that A(z)/z =0
mod G(z).

3. Suppose that I is cyclic and G(z) has a nonzero root 5. Now take an nonzero even
weight codeword (ao, ..., an—1) (Which must exist for any nontrivial linear code). By
the previous part, A(z)/z is a multiple of G(z). Because G(3) = 0, we have A(5) = 0.
Now applying the same argument on the cyclic shift of the codeword and using the
first part we get that A(a'3) = 0 for every i = 0,...,n — 1. This means that A(z) has
n distinct root, which is not possible because it is nonzero and has degree less than n.
Thus I does not have a nonzero root and we can take it as 2" for some 7.



