Exercise Sheet 3

Exercise 3.1. Let C be a linear $[n, k > 1, d]$ code over \mathbb{F}_q with a generator matrix of the form

$$
G = \left(\begin{array}{c|ccccc} 0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 1 \\ \hline G_1 & & & G_2 & \end{array}\right),
$$

where the Hamming weight of the first row is d. Define C_1 as the linear $[n_1 := n - d, k_1, d_1]$ code over \mathbb{F}_q generated by G_1 .

- 1. Show that G_1 has rank $k 1$, and thus, $k_1 = k 1$.
- 2. Let c_1 be a codeword of \mathcal{C}_1 . Show that the number of words $c_2 \in \mathbb{F}_q^d$ such that $(c_1 \mid c_2) \in$ C is exactly q , and that if c_1 is nonzero, there is such a choice for c_2 with Hamming weight at most $d - \lfloor d/q \rfloor$.
- 3. Show that $d_1 \geq \lceil d/q \rceil$.

Exercise 3.2. Denote by $N_q(k,d)$ the length of a shortest linear code of dimension k and distance d over \mathbb{F}_q .

- 1. Show that $N_q(k, d) \geq d + N_q(k 1, \lceil d/q \rceil)$. (*Hint:* use the last exercise.)
- 2. Show that $N_q(k,d) \geq \sum_{i=0}^{k-1} \lceil d/q^i \rceil$. Derive the Singleton bound for linear codes using this result.
- 3. Show that the first-order Reed-Muller code over \mathbb{F}_q achieves this bound. Recall that the first-order Reed-Muller code is defined as the linear $[q^m, m+1]$ -code over \mathbb{F}_q with an $(m + 1) \times q^m$ generator matrix whose columns range over all the vectors in \mathbb{F}_q^{m+1} with a first entry equaling 1.

Exercise 3.3. A *burst of length* ℓ is the event of having errors in a codeword such that the locations *i* and *j* of the first (leftmost) and last (rightmost) errors, respectively, satisfy $j - i =$ $\ell - 1$. Let C be a linear [n, k]-code over \mathbb{F}_q that is able to correct every burst of length t or less.

- 1. Show that in every nonzero codeword $c \in \mathcal{C}$, the locations i and j of the first and last nonzero entries in c must satisfy $j - i \geq 2t$.
- 2. Show that $n k \geq 2t$.
- 3. (Sphere-packing:) Show that

$$
q^{n-k} \ge 1 + n(q-1) + (q-1)^2 \sum_{i=0}^{t-2} (n-i-1)q^{i}.
$$

Exercise 3.4. An (n, M, d)-code of length n containing M codewords and minimum distance d is called an (n, M, d; w) *constant-weight code* if each codeword has Hamming weight w. Let C be an $(n, M, d = 2t + 1; w = 2t + 1)$ constant-weight code over \mathbb{F}_q .

- 1. For every codeword $c \in \mathcal{C}$, how many words y of Hamming weight $t + 1$ are there in \mathbb{F}_q^n that are at Hamming distance t from c ?
- 2. Show that

$$
M \leq \frac{{n \choose t+1}(q-1)^{t+1}}{{2t+1 \choose t}}.
$$