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Exercise Sheet 3

(Solutions)

Exercise 3.1.

1. If G1 has rank below k — 1, then it must be that for some nonzero ¢; € Flg_l, c1G1 = 0.
Now let ¢ := (0 | ¢1)G, which is nonzero (as G has rank k) and has all-zeros on its first
n — d coordinates. Suppose that one of the nonzero entries of cis o € F4, and observe
that (—a | ¢1) must have weight less than d. This contradicts the assumption that C has
minimum distance d.

2. Let G| be the submatrix of G formed by removing its last d columns. This submatrix
has rank equal to the rank of GG;, which is £ — 1. Thus the number of solutions for the
linear equation G = ¢; is exactly ¢, and this is the number of the choices of ¢, that
we are looking for.

For the second part, let the unique nonzero choice of z € F’;_l be such that zG; = ¢;.
If G2 has weight at most d — [d/q] then we are done. Otherwise, the number of zeros
in Gy is strictly less than [d/q], and thus there is an aF, such that the number of a’s
in Gy is at least [d/q] (as otherwise the length of xG2 won't reach d). Then (—a | )G
must be the codeword of C with the desired properties.

3. Suppose for the sake of contradiction that there is a nonzero z € F 5*1 such that ¢; :=
G has weight less than [d/q|. Then use the result obtained in the previous part to
complete ¢; to a codeword (c; | ¢2) of C such that ¢ has weight at most d — [d/q]. Thus
the weight of (¢; | c2) would be less than d, which is a contradiction.

Exercise 3.2.

1. Suppose that there is a code C of length smaller than d + N,(k — 1,[d/q]). Then C
has a generator matrix of the form given in the previous exercise, up to a permutation
of the columns. By the last exercise, the matrix GG; generates a code of dimension
k — 1, minumum distance at least [d/q| but length less than N, (k — 1, [d/q]), which is
a contradiction.

2. The inequality is immediate from the previous part by induction on k. Observe that
each term on the right hand side of this inequality is at least one, thus the right hand
side is at least d + (k — 1) - 1, which implies the Singleton bound.

3. The minimum distance of the first-order Reed-Muller code is ¢™ ! (q — 1), as for every

n-variate polynomial f of degree 1 and every a € FF,, the number of solutions z for
f(z) = ais g™ 1is ¢™ 1. Pluggin d = ¢™ — ¢™ ! on the right hand side of the bound
we get that

Ny(k,d) > [¢" — ¢ "+ [¢" ' = ¢ 21+ + " =T+ [¢" — ¢ '] = ¢™.

So the inequality is tight for the code because the length of the code is ¢™.
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Exercise 3.3. A burst of length ¢ is the event of having errors in a codeword such that the
locations i and j of the first (leftmost) and last (rightmost) errors, respectively, satisty j —i =
¢—1. Let C be a linear [n, k]-code over I, that is able to correct every burst of length ¢ or less.

1. Consider a codeword ¢ = (ci,...,c,) that contradicts this assumption. Then w =
(c1,-..,¢i4t-1,0,0,...,0) can be either the zero codeword with a burst of length ¢ at
left, or ¢ with a burst of length ¢ at right, and is thus not uniquely correctable, a contra-
diction.

2. The proof is similar to that of the Singleton bound. Since the number of codewords
is ¢* > ¢!, there must be at least two codewords that agree on their first £ — 1 co-
ordinates, and thus, there is a nonzero codeword that has all zeros on its first £ — 1
coordinates. Using the notation of the previous part we will have j —i < n —k + 1.
Thus, 2t < n — k by the previous part.

3. The proof is similar to the classical sphere-packing bound except that the shape of the
“balls” are now different. For the sphere-packing bound we had to count the number
of points that are at distance ¢ from a given point, or the “volume” of the Hamming
ball of radius ¢ around each codeword. Here instead we only need to count the number
of points within such a ball that are different from the word at the center (denoted by
w) by a burst of size at most t. Denote this quantity by V. We have to distinguish the
following cases and add up the numbers:

e The word w at the center,

e Words that are different from w in only one position. The number of such words
isn(qg—1),

e Words that are different from w by a burst of size i, 2 < i < t. The number of such
words is (n — i+ 1)(g — 1)%¢" 2.

Altogether, we will have

|
I\

V=14n(g—1+(@-132Y (n—i-1)¢,

7

Il
o

and similar to the sphere-packing bound, the “spheres” must be disjoint so that ¢ <
q"/V. The bound follows.

Exercise 3.4.

1. (Qt;i-l) .

2. For every c € C, denote by Y, the set
Yo :={y € F: wgt(y) =t + 1,dist(y, c) = t}.

Note that for each ¢ # ¢’ € C, we must have Y. N Y., = () as otherwise ¢ and ¢’ might be
confused. Thus the number of y € F of weight ¢ + 1 that are at distance ¢ from some
codeword of C is exactly M (Qttﬂ), where M := |C|. But on the other hand the number

of such words cannot exceed () (¢ — 1)"*, and the bound follows.



