Exercise Sheet 7

Exercise 7.1. Count the number of linear cyclic codes of length 8 over \mathbb{F}_3 .

Exercise 7.2.

- 1. Design a 3 error-correcting BCH code of length 31 and dimension 16 over \mathbb{F}_2 .
- 2. Suppose that $S_i = X^i + Y^i + Z^i$ (for i = 1, ..., 6) are the syndromes for a received word. Write expressions for $\sigma_2 = XY + YZ + XZ$ and $\sigma_3 = XYZ$ as rational functions in $S_1, ..., S_6$.
- 3. Design a decoding algorithm for the code.

Exercise 7.3. Let p be an odd prime. Suppose that we have an unknown line in $\mathbb{F}_{p^{\prime}}^{2}$ and are given a set $\{(\alpha, y_{\alpha}): \alpha \in \mathbb{F}_{p}\}$ such that for all but (p - 3)/2 of the choices of α , y_{α} is the evaluation of the line at point α . Show that it is possible to uniquely determine the equation of the line from the given information, and design an algorithm that finds the line.