
Introduction to Coding Theory - Spring 2009 Exercise Sheet 7

Exercise Sheet 7

(Solutions)

Exercise 7.1. First, we factorize x8 − 1, which can be writen as

x8 − 1 = (x4 − 1)(x4 + 1) = (x− 1)(x+ 1)(x2 + 1)(x4 + 1).

Observe that x2 + 1 and x4 + 1 have no linear factors. However, x4 + 1 is divisible by the
irreducible polynomial x2 − x− 1, which gives

x8 − 1 = (x− 1)(x+ 1)(x2 + 1)(x2 − x− 1)(x2 + x− 1).

One can also see that x8 − 1 has two degree 1 factors and three degree 2 factors by taking
α as a primitive element of F×9 and observing that the minimal polynomials of the elements
in each of the following tuples are the same: (α0), (α1, α3), (α2, α6), (α4), (α5, α7). Thus the
number of possible generator polynomials for a length 8 cyclic code (which is the number of
linear cyclic codes) is 25 = 32.

Exercise 7.2.

1. Let ω denote a primitive 31st root of unity in F32. First, we write a complete list of
minimal polynomials for various powers of ω. Denote the minimal polynomial of ωi by
gi. Then gi is also the minimal polynomial of ω2i, ω4i, . . . (e.g., g1 = g2 = g4 = g8 = g16).
According to this, the powers of ω for which each gi is the minimal polynomial are
listed below:

g0 : 0
g1 : 1, 2, 4, 8, 16
g3 : 3, 6, 12, 24, 17
g5 : 5, 10, 20, 9, 18
g7 : 7, 14, 28, 25, 19
g11 : 11, 22, 13, 26, 21
g15 : 15, 30, 29, 27, 23

Thus the degree of g0 is 1 and the rest of the gi’s have degree 5. Now in order to design
the code, we need to take three degree 5 polynomials that are factors of the generating
polynomial g(x) for the code (because the dimension of the code must be 16, we need
the degree of the generating polynomial to be 31−16 = 15), and wee need the generator
polynomial to contain 6 consecutive powers of ω as its roots (as the distance of the code
must be at least 7). We see that a suitable choice is g(x) = g1(x)g3(x)g5(x), which has
ω1, . . . , ω6 as its roots.

2. Let H(z) = 1 − σ1z + σ2z
2 − σ3z

3 be the error-locator polynomial. Thus H ′(z) =
−σ1 + 2σ2z − 3σ3z

2. As we will be working with the coefficients of these polynomials
in characteristic two, we can simplify the polynomials as H(z) = 1 +σ1z+σ2z

2 +σ3z
3

and H ′(z) = σ1 + σ3z
2. Let S(z) := S1 + S2z + S3z

2 + · · · be a power series defined by
the Si. According to the Newton relations, we must have

H(z) · S(z) = −H ′(z),

1



Introduction to Coding Theory - Spring 2009 Exercise Sheet 7

thus,
(1 + σ1z + σ2z

2 + σ3z
3) · (S1 + S2z + S3z

2 + · · · ) = σ1 + σ3z
2.

We already know that σ1 = S1. Now comparing the coefficients of various powers of z
on both sides (namely, z2 and z3), we obtain

S3 + σ1S2 + σ2S1 = σ3 ⇒ S3 + S1S2 + σ2S1 = σ3, (1)

and,
S4 + σ1S3 + σ2S2 + σ3S1 = 0⇒ S4 + S1S3 + σ3S1 = σ2S2. (2)

Substituting (1) in (2) gives

σ2S2 = S4 + S1S3 + S3S1 + S3
1S2 + σ2S

2
1 ,

thus,
σ2 = (S4 + S2

1S2)/(S2 + S2
1).

Using this in (1) finally gives

σ3 = S3 + S1S2 + S1(S4 + S2
1S2)/(S2 + S2

1).

3. As seen in the lecture, a simple decoding algorithm will first compute the syndromes
S1, . . . , S6 from the received word y as Si := y(ωi), and then uses the identities obtained
in the previous parts to compute σ1, σ2, σ3, and thus, the error locator polynomialH(z)
(if all the Si are zero, no error has occurred and decoding stops right away). The roots
of H(z) include the powers of ω at which the errors have occurred. By erasing y at the
obtained positions, we can apply an erasure decoding algorithm (which amounts to
solving a system of linear equations) to find the exact set of errors.

Exercise 7.3. The vector (y0, y1, . . . , yp−1) which encodes the evaluations of the line at various
points of Fp (except for a bounded number of errors) can be seen as a “received word” in a
Reed-Solomon code of dimension k = 2 and length n = p. The minimum distance of this
code is d = n − k + 1 = p − 1, and thus, the code is able to uniquely correct any set of up
to b(d − 1)/2c = b(p − 2)/2c = (p − 3)/2 errors, and it is guaranteed that the number of
erroneous evaluations do not exceed this amount. There are various algorithms that can be
applied in this problem. But perhaps the simplest solution is to enumerate all lines (there
are p2 of them) and find the one with the closest evaluation vector (in Hamming weight) to
(y0, y1, . . . , yp−1). By the argument above, this must be the line we are looking for.

2


