Introduction to Coding Theory - Spring 2009 Exercise Sheet 9

Exercise Sheet 9

(Solutions)

Exercise 9.1. We are looking for a matrix
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meaning that the set of solutions for (v}, ...,v},) is the set of codewords of an [n, 1, n| Gen-

eralized Reed-Solomon code. As the distance of this code is n, there is always a nonzero
codeword that satisfies v} # 0,..., v, # 0.

Exercise 9.2.

1. We show that S uniquely determines e. Suppose that there are two different choices
e and ¢’ of the error vector, each of weight at most 7 such that H(c +e) = H(c + ¢€).
This would imply that H(e —¢’) = 0, where e — ¢’ is a nonzero vector of weight at most
27 < d. Then e — ¢/ would be a nonzero codeword of the code, which is a contradiction
as we know that no nonzero codeword can have weight less than d.

2. Wehave ST = H(c+¢) = Hc+ He = He, as cis a codeword an thus Hc = 0.

3. This immediately follows from expanding the system of linear equations given by
ST = He, and observing that e¢; = 0 for every j ¢ J.

4. First we note that the multiplicative inverse of 1 — ;= can be written as

1
=1+ oz + (jz)* + -+ (a;2)? mod z%1.
1—ajx
Substituting this identity in the summation } ;. ; =2~ o and we obtain
e; =
J d—1
Z oy Z Z € mod x
jeJ =0 jeJ

which combined with the previous part gives the required identity.
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5. The degree bounds hold because of the bound on the number of errors, ie., |J| < 7.
Note that A(x), by its definition, factorizes to linear factors. Thus A(z) and I'(z) are
relatively prime iff they do not share a root. This must be the case because if A(a; ') =
0,thent € J and

Dl ) == e H (1— ama; )
meJ\{t}
which is nonzero because the «; are distinct.

6. Using part 4 and the definition of A(z), we get

ejllic (1 —ajx
A(x)S(x) = Z e )

- 1—ajx
jeJ

mod 7!

which is indeed I'(z).
7. As A(0) = 1, the polynomial A(z) has a multiplicative inverse in the ring F,[z] /x4~
and we can write
S(x) =T(x)(A(2z))™" mod 2%t
Substituting this in the assumption, we get
M) (2)(A(2)) ™" =4(z) mod 27,

. Az)D(z) = y(x)A(z) mod 2%t
Because the degree of both sides is already less than d — 1, we have in fact
A@)T(z) = v(2)A(z),
and thus A(z) | A(z)I'(z), which means A(z) | A(z) because ged(A(z),[(x)) = 1.
8. Let \(z) = S°7_y Miz? and () = Y27_ viz". Then the identity
AMz)S(x) = y(z) mod x4t

can be written in the matrix form

S() 0 cee 0 Yo
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Sr_1 S;r_o ... 0 A1 Yr—1

Sr  Sr_1 ... So - 0

ST+1 ST PN 51 )\T 0

Sa—2 Sa-3 .-+ Sq—r-2 0

And we know that any solution of this system for A(z) satisfies A(z) | A(z). Now if
A(x) is nonzero, we know that the set of roots of A determines a superset .J' (of size at
most 7) of the set of error locations J. Thus, using A(x), one can form and solve the
system
Mi=1,...,7): Zaé»ej =5
jeS
for unknowns e; (which is known as erasure decoding) to find the error values.



