
Introduction to Coding Theory - Spring 2009 Exercise Sheet 9

Exercise Sheet 9

(Solutions)

Exercise 9.1. We are looking for a matrix

HC =


1 1 . . . 1
α1 α2 . . . αn
α2

1 α2
2 . . . α2

n
...

...
. . .

...
αk1 αk2 . . . αkn



v′1 0

v′2

0
. . .

v′n


such that GCH>C = 0. Thus we want that for each i = 0, . . . , k − 1 and j = 0, . . . , n− k − 1,

n∑
`=1

v`v
′
`α
i+j
` = 0,

or equivalently, 
1 1 . . . 1
α1 α2 . . . αn
α2

1 α2
2 . . . α2

n
...

...
. . .

...
αn−2

1 αn−2
2 . . . αn−2

n



v1 0

v2

0
. . .

vn



v′1
v′2
...
v′n

 = 0,

meaning that the set of solutions for (v′1, . . . , v
′
n) is the set of codewords of an [n, 1, n] Gen-

eralized Reed-Solomon code. As the distance of this code is n, there is always a nonzero
codeword that satisfies v′1 6= 0, . . . , v′n 6= 0.

Exercise 9.2.

1. We show that S uniquely determines e. Suppose that there are two different choices
e and e′ of the error vector, each of weight at most τ such that H(c + e) = H(c + e′).
This would imply that H(e− e′) = 0, where e− e′ is a nonzero vector of weight at most
2τ < d. Then e− e′ would be a nonzero codeword of the code, which is a contradiction
as we know that no nonzero codeword can have weight less than d.

2. We have S> = H(c+ e) = Hc+He = He, as c is a codeword an thus Hc = 0.

3. This immediately follows from expanding the system of linear equations given by
S> = He, and observing that ej = 0 for every j /∈ J .

4. First we note that the multiplicative inverse of 1− αjx can be written as

1
1− αjx

≡ 1 + αjx+ (αjx)2 + · · ·+ (αjx)d−2 mod xd−1.

Substituting this identity in the summation
∑

j∈J
ej

1−αjx
and we obtain

∑
j∈J

ej
1− αjx

=
d−2∑
`=0

X`

∑
j∈J

ejα
`
j

 mod xd−1

which combined with the previous part gives the required identity.
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5. The degree bounds hold because of the bound on the number of errors, i.e., |J | ≤ τ .
Note that Λ(x), by its definition, factorizes to linear factors. Thus Λ(x) and Γ(x) are
relatively prime iff they do not share a root. This must be the case because if Λ(α−1

t ) =
0, then t ∈ J and

Γ(α−1
t ) := et

∏
m∈J\{t}

(1− αmα−1
t )

which is nonzero because the αi are distinct.

6. Using part 4 and the definition of Λ(x), we get

Λ(x)S(x) ≡
∑
j∈J

ej
∏
j∈J(1− αjx)
1− αjx

mod xd−1

which is indeed Γ(x).

7. As Λ(0) = 1, the polynomial Λ(x) has a multiplicative inverse in the ring Fq[x]/xd−1

and we can write
S(x) ≡ Γ(x)(Λ(x))−1 mod xd−1.

Substituting this in the assumption, we get

λ(x)Γ(x)(Λ(x))−1 ≡ γ(x) mod xd−1,

or,
λ(x)Γ(x) ≡ γ(x)Λ(x) mod xd−1.

Because the degree of both sides is already less than d− 1, we have in fact

λ(x)Γ(x) ≡ γ(x)Λ(x),

and thus Λ(x) | λ(x)Γ(x), which means Λ(x) | λ(x) because gcd(Λ(x),Γ(x)) = 1.

8. Let λ(x) =
∑τ

i=0 λix
i and γ(x) =

∑τ−1
i=0 γix

i. Then the identity

λ(x)S(x) ≡ γ(x) mod xd−1

can be written in the matrix form

S0 0 . . . 0
S1 S0 . . . 0
...

...
. . .

...
Sτ−1 Sτ−2 . . . 0
Sτ Sτ−1 . . . S0

Sτ+1 Sτ . . . S1
...

...
. . .

...
Sd−2 Sd−3 . . . Sd−τ−2




λ0

λ1
...
λτ

 =



γ0

γ1
...

γτ−1

0
0
...
0


And we know that any solution of this system for λ(x) satisfies Λ(x) | λ(x). Now if
λ(x) is nonzero, we know that the set of roots of λ determines a superset J ′ (of size at
most τ ) of the set of error locations J . Thus, using λ(x), one can form and solve the
system

(∀i = 1, . . . , τ) :
∑
j∈J ′

αijej = Si

for unknowns ej (which is known as erasure decoding) to find the error values.

2


