Exercise 1.1.

- (a) Suppose that $x \in f(A \cup B)$. Then, there is $y \in A \cup B$ such that f(y) = x. If $y \in A$, then $x \in f(A)$, and if $y \in B$, then $x \in f(B)$. So, $x \in f(A) \cup f(B)$. Conversely, suppose that $x \in f(A) \cup f(B)$. If $x \in f(A)$, then there is $y \in A$ such that x = f(y). Similarly, if $x \in f(B)$, then there is $y \in B$ such that x = f(y). Hence, $x \in f(A \cup B)$.
- (b) Suppose that $x \in f(A \cap B)$. Then there is $y \in A \cap B$ such that x = f(y). Hence, $x \in f(A)$ and $x \in f(B)$, which shows that $x \in f(A) \cap f(B)$.
- (c) Suppose that $x \in f^{-1}(C \cup D)$. Then $f(x) =: y \in C \cup D$. If $y \in C$, then $f(x) \in C$, so that $x \in f^{-1}(C)$. Similarly, if $y \in D$, then $x \in f^{-1}(D)$. Hence $x \in f^{-1}(C) \cup f^{-1}(D)$. This shows that $f^{-1}(C \cup D) \subseteq f^{-1}(C) \cup f^{-1}(D)$. Conversely, suppose that $x \in f^{-1}(C) \cup f^{-1}(D)$. If $x \in f^{-1}(C)$, then $f(x) =: y \in C$. Similarly, if $x \in f^{-1}(D)$, then $f(x) \in D$. Hence, $f(x) \in C \cup D$, so that $x \in f^{-1}(C \cup D)$. This shows that $f^{-1}(C) \cup f^{-1}(D)$. This shows that $f^{-1}(C) \cup f^{-1}(D)$.
- (d) Let $x \in f^{-1}(C \cap D)$. Then $f(x) =: y \in C \cap D$, and hence $y \in C$ and $y \in D$. Therefore, $x \in f^{-1}(C)$ and $x \in f^{-1}(D)$ and hence $x \in f^{-1}(C) \cap f^{-1}(D)$. Conversely, suppose that $x \in f^{-1}(C) \cap f^{-1}(D)$. Then $x \in f^{-1}(C)$ and $x \in f^{-1}(D)$, so $f(x) \in C \cap D$. It follows that $x \in f^{-1}(C \cap D)$.

Exercise 1.2.

- (a) Let $f: X \to P(X)$ be defined by $f(x) := \{x\}$. This mapping is clearly injective.
- (b) Let g ∈ X → P(X) be a mapping, and suppose that g is surjective. Consider S := {x | x ∉ g(x)}. Since g is surjective, there exists z ∈ X such that S = g(z). By definition of S, we have that z ∉ S: if z ∈ S, then z ∉ g(z) = S. On the other hand, since z ∉ S, it follows that z ∈ g(z) = S, a contradiction.

Exercise 1.3.

(a) Since $A - B = A \cap B^c$, we can use the De Morgan laws to see that

$$(A-B) \cup (B-A) = (A \cap B^c) \cup (B \cap A^c) = (A \cup B) \cap (A^c \cup B^c).$$

- (b) Since $A\Delta B = A^c$, it follows by part (a) that $A \cup B \supseteq A^c$, so that $B \supseteq A^c$ since $A \cap A^c = \emptyset$. Therefore, $A \cup B = X$, and hence $A^c = A\Delta B = A^c \cup B^c$, so $B^c \subseteq A^c$, so $B \supseteq A$. It follows that $B \supseteq A \cup A^c = X$, so B = X.
- (c) Follows from the definition.
- (d) Let \oplus denote the logical operation of XOR: if p and q are boolean variables, then $p \oplus q$ is true iff either p is true, or q is true. Then the assertion $x \in A\Delta B$ is equivalent to $(x \in A) \oplus (x \in B)$, by the definition of Δ . Hence $x \in (A\Delta B)\Delta C$ is the assertion $((x \in A) \oplus (x \in B)) \oplus (x \in C)$. Associativity now follows from the associativity of boolean formulas.

- (e) P(X) is closed under Δ , since this operation produces a subset of X; the operation is associative according to (d). The element \emptyset is the neutral element with respect to Δ , since $A\Delta\emptyset = (A \emptyset) \cup (\emptyset A) = A \cup \emptyset = A$. The inverse of A with respect to this operation is A itself, since $(A A) \cup (A A) = \emptyset \cup \emptyset = \emptyset$.
- (f) We know by (a) that $A\Delta B = (A \cup B) \cap (A^c \cup B^c) = (A \cup B) (A \cap B)$, since $C D = C \cap D^c$, and $(A^c \cup B^c)^c = A \cap B$. Therefore, since $A \cap B \subseteq A \cup B$, $|A\Delta B| = |A \cup B| - |A \cap B|$, and by the principle of inclusion and exclusion, we have $|A \cup B| = |A| + |B| - |A \cap B|$, which proves the assertion.

Exercise 1.4. First we show that for all $x \in X$ there is $y \in Y$ such that $(x, y) \in F$. Let $S = \phi(\{x\})$. Then, since $\gamma(S) = \{y\}$ by assumption, we see that $S \neq \emptyset$. Since the conditions are symmetric in X and Y, we see that for every y there is an x such that $(x, y) \in F$. Hence, if F is the graph of a function, then this function is surjective. Next, we show that for every x, there is exactly one y such that $(x, y) \in F$. Suppose that $\phi(\{x\}) = S$. Then, since $\gamma(S) = \{x\}$, we have for all $y \in S$ that $\gamma(\{y\}) = \{x\}$. Hence, $\phi(\{x\}) = \phi(\gamma(\{y\})) = \{y\}$, hence there is only one y such that $(x, y) \in F$. Hence, F is the graph of a function. Since the conditions are symmetric in x and y, we see that F is also injective.

Exercise 1.5. The given numbers are possible. Let M denote the set of married students, H denote the set of male students, and V denote the set of students of age at least 21. Assume that the students are numbered from 1 to 10000. Then we can have the following setup:

$$\begin{split} M &= \{1, \dots, 2521\} \\ H &= \{607, 608, \dots, 2521, 2522, \dots, 7077\} \\ V &= \{36, \dots, 606\} \cup \{607, 608, \dots, 1908\} \cup \{2522, 2523, \dots, 3763\}. \end{split}$$

Then we have

$$\begin{split} |M| &= 2521 \\ |H| &= 7077 - 606 = 6471 \\ |V| &= 606 - 35 + 1908 - 606 + 3763 - 2521 = 3115 \\ |H \cap M| &= |\{607, 608, \dots, 2521\}| = 2521 - 606 = 1915 \\ |M \cap V| &= |\{36, \dots, 606\} \cup \{607, 608, \dots, 1908\}| = 606 - 35 + 1908 - 606 = 1873 \\ |H \cap M \cap V| &= |\{607, 608, \dots, 1908\}| = 1908 - 606 = 1302. \end{split}$$

These numbers are identical with the requirements given in the problem statement.