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Exercise 2.1.

(a+b) Let f : N0 → Z be given by f(x) = x, and g : Z → N0 be given by g(x) := |x|. Then g ◦ f
is the identity map on N0: if z ∈ N0, then (g ◦ f)(z) = g(f(z)) = g(z) = |z| = z. Hence
g ◦ f is injective and surjective. But f is not surjective, and g is not injective. It follows
that both assertions are wrong.

Exercise 2.2.

1. Let
(N

n

)
denote the set of subsets of N of cardinality n. Then there is an injection

ιn :
(N

n

)
→ Nn where ιn is defined as follows: if S is a subset of N with n elements,

then we order the elements of S in increasing order, i.e., S = {a1, . . . , an} where
a1 < a2 < · · · < an, and map S to (a1, . . . , an). By Theorem 1.14(d) we know that
Nn is enumerable via a function, say f . Then gn := ιn ◦ f :

(N
n

)
→ N is an enumerator

for
(N

n

)
.

2. Let gn be the enumerator for
(N

n

)
constructed in the previous step. We now construct

an injection ϕ : A → N × N as follows: if S is a finite subset of N with t elements, then
ϕ(S) = (t, gt(S)). This mapping is injective: suppose that S and T are two different
subsets of N. If S and T have different numbers of elements, then ϕ(S) and ϕ(T )
differ in their first coordinate, hence are different. If they have the same number, n,
of elements, then gn(S) and gn(T ) differ since gn is an enumerator for

(N
n

)
, and hence

ϕ(S) and ϕ(T ) are different.

3. We construct directly an injection τ of A into N: if S = {s1, . . . , st} is a finite subset of N,
then we define τ(S) :=

∑t
i=1 2si . Because binary representations of natural numbers

are unique, this mapping is an injection (in fact, even a bijection).

Exercise 2.3.

1. We have (x ⇔ y) = (x ⇒ y) ∧ (y ⇒ x). Therefore

x y x ⇒ y y ⇒ x x ⇔ y

0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

,

so that (x ⇔ y) = ¬(x⊕ y).

2. We have
x y x ⇒ y ¬y ⇒ ¬x (x ⇒ y) ⇔ (¬y ⇒ ¬x)
0 0 1 1 1
0 1 1 1 1
1 0 0 0 1
1 1 1 1 1

,
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which proves the assertion.

3. From the truth table of x ⇒ y we find that the polynomial representation of x ⇒ y
is 1 + x + xy. Hence, the polynomial representation of (x ⇒ (y ⇒ z)) is that of
x ⇒ (1 + y + yz) which is 1 + x + x(1 + y + yz) = 1 + xy + xyz. On the other
hand, the polynomial representation of ((x∧ y) ⇒ z) is 1+xy +xyz, which is the same
as that of (x ⇒ (y ⇒ z)). Hence, the assertion follows.

4. This is not a tautology. Suppose that x = z = 0, y = 1. Then (x∧ y) ⇒ z is 0 ⇒ 0 which
is 1. Moreover, (x ∨ y) ⇒ z is 1 ⇒ 0 which is 0. But 1 ⇒ 0 is 0, and not 1. Hence, the
formula is not a tautology.

Exercise 2.4. We use induction on n. If n = 1, then f(x1) = x1 and this is 0 iff x1 = 0, i.e., iff
an even number (namely 0) of xi is 1. Let now n ≥ 2. Let g(x1, . . . , xn−1) := x1 ⊕ · · · ⊕ xn−1,
so that f(x1, . . . , xn) = g(x1, . . . , xn−1) ⊕ xn. Using the truth table of ⊕ in Section 2.4.3, we
see that f(x1, . . . , xn) = 0 iff either g(x1, . . . , xn−1) = xn = 0, or g(x1, . . . , xn−1) = xn = 1. By
induction hypothesis, g(x1, . . . , xn−1) = 0 iff an even number of the xi’s is 1. Hence, in the
former case, an even number of the xi’s among x1, . . . , xn−1 is 1, and xn = 0, so that an even
number of the xi’s among x1, . . . , xn is 1. In the latter case, an odd number of the xi’s among
x1, . . . , xn−1 is 1, and xn = 1, so that again an even number of the xi’s among x1, . . . , xn is 1.

Exercise 2.5.

(a) We have

f−1(0) = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (0, 1, 1, 1)
= (1, 0, 0, 0), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}.

Therefore, we obtain the following CNF for f :

f(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x2 ∨ ¬x3 ∨ x4) ∧
(x1 ∨ ¬x2 ∨ x3 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4) ∧
(¬x1 ∨ x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ ¬x3 ∨ ¬x4) ∧
(¬x1 ∨ ¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4) ∧
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4).

(b) We have

f−1(1) = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)
= (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}.

Therefore, we obtain the following DNF for f :

f(x1, x2, x3, x4) = (x1 ∧ x2 ∧ ¬x3 ∧ ¬x4) ∨ (x1 ∧ ¬x2 ∧ x3 ∧ ¬x4) ∨
(x1 ∧ ¬x2 ∧ ¬x3 ∧ x4) ∨ (¬x1 ∧ x2 ∧ x3 ∧ ¬x4) ∨
(¬x1 ∧ x2 ∧ ¬x3 ∧ x4) ∨ (¬x1 ∧ ¬x2 ∧ x3 ∧ x4).
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(c) The answer is

f(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 +
x1x2x3 + x1x2x4 + x2x3x4 +
x1x2x3x4,

because of the following: if (x1, x2, x3, x4) has at most one nonzero entry, then all the
terms vanish, and the value of the sum is zero. If (x1, x2, x3, x4) has exactly two coordi-
nates equal to one, then exactly one term in the first group is nonzero, and all the other
terms are zero, so the value of f on this tuple is one. If (x1, x2, x3, x4) has three nonzero
coordinates, then the value of the sum in the first group is 1 (exactly three of the terms
are nonzero), the value of the sum in the second group is also 1 (exactly one of the three
terms is one), and the value of the last term is zero, so in total the value of f is 1+1 = 0.
If all the entries of (x1, x2, x3, x4) are 1, then all the terms are equal to 1, and since there
is an even number of such terms, the value of f is 0. Hence, f(x1, x2, x3, x4) = 1 iff the
vector (x1, x2, x3, x4) has exactly two nonzero components.
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