Exercise 5.1.

1. Here is a possible realization of G_f :

- 2. We can without loss of generality assume that $S = \underline{n}$ for some n. Since f is a function, every node in G_f has exactly one outgoing edge: if there is a node with no outgoing edge, then the function is not defined for the element of \underline{n} belonging to this node which is impossible; if there are more than two outgoing edges, then the element corresponding to the node is mapped to at least two different elements, and hence f cannot be a function. Since f is surjective, each node v has an incoming edge, since there is an element mapped to the element corresponding to v by f. Finally, since f is injective, each node has exactly one incoming edge, since otherwise there are two elements of \underline{n} mapped to the same element.
- 3. We proceed by induction on *n*: If *n* = 1, then *G_f* is a selfloop with one node, hence it is a disjoint union of cycles. Suppose now that *n* > 1. Let *v*₀ be an arbitrary node in *G_f*. Let *v*₁ be the node obtained by moving from *v*₀ along its outgoing edge; let *v*₂ be the node obtained by moving from *v*₁ along its outgoing edge; in general, let *v_i*, *i* ≥ 1, be the node obtained by moving from *v*_{*i*-1} along its outgoing edge. Since the set *S* = <u>*n*</u> is finite, there are *i* and *j*, *i* < *j*, such that *v_i* = *v_j*. Let *i* be the smallest index with this property. Then *i* = 0, since otherwise there are two incoming edges into *v_i*, one from *v_{i-1}*, and one from *v_{j-1}*. It follows that *v*₀ → *v*₁ → ··· → *v_{j-1}* → *v*₀ is a cycle. We remove it from *G_f*. The resulting graph is the graph of a bijective map on *S* {*v*₀, ..., *v_{j-1}*}, and hence is a disjoint union of cycles.
- 4. If G_f is a cycle of length n, then $f^n = \text{id:}$ if $f(v_i) = v_{i+1}$ for $i = 0, \ldots, n-2$, and $f(v_{n-1}) = v_0$, then $f^2(v_i) = v_{(i+2) \mod n}$, $f^3(v_i) = v_{(i+3) \mod n}$, and in general $f^k(v_i) = v_{(i+k) \mod n}$. Therefore, $f^n = \text{id}$, and $f^j \neq \text{id}$ for $1 \leq j < n$. Now let f be a general permutation on a set with n elements, say \underline{n} . By the previous part we know that G_f is a disjoint union of cycles. Hence, there is a partition $S_1 \sqcup S_2 \sqcup \cdots \sqcup S_t$ of \underline{n} such that f restricted to S_i is a cycle, i.e., the elements of S_i , say a_1, \ldots, a_ℓ , can be ordered in such a way that $f(a_j) = a_{(j+1) \mod \ell}$. Let f_i denote the function f restricted in S_i . We can write f as $f(x) = \delta_1(x)f_1(x) + \cdots + \delta_t(x)f_t(x)$, where $\delta_i(x) = 1$ if $x \in S_i$, and $\delta_i(x) = 0$ otherwise. It follows that $f^k(x) = \delta_1(x)f_1^k(x) + \cdots + \delta_t(x)f_t^k(x)$, and hence $f^k = \text{id}$ iff $f_i^k = \text{id}$ for all k. If n_1, n_2, \ldots, n_t denote the sizes of S_1, S_2, \ldots, S_k , respectively, then by the first part we proved above, we know that $f_i^{n_i} = \text{id}$ and that n_i is the smallest positive integer with the property. It follows that for all n divisible by

 $N := \text{lcm}(n_1, n_2, ..., n_t)$ we have that $f^n = \text{id}$, and N is the smallest positive integer with this property.

Exercise 5.2. Let *A* be the matrix representation of *S* and *B* be that of *R*, as suggested in the exercise. By definition, $S \circ R = \{(i, j) \mid \exists \ell : (i, \ell) \in S \land (\ell, j) \in R\}$. Therefore, $(i, j) \in S \circ R$ iff there exists ℓ such that $A_{i\ell} \land B_{\ell j}$ is one, which is the case iff $\bigvee_{\ell=1}^{n} A_{i\ell} \land B_{\ell j}$ is one.

Exercise 5.3. Here is a list in terms of their Hasse diagrams:

0-0-0-0		
		000
<u> </u>	9-9-	
	800	0000

Exercise 5.4.

- 1. We have the following:
 - (a) Reflexivity: since $(a, a) \in R$ for $a \in A$, and $(b, b) \in B$ for $b \in B$, we have $((a, b), (a, b)) \in S \times R$, by definition of $S \times R$.
 - (b) Antisymmetry: suppose that ((a, b), (a', b')) ∈ R × S and ((a', b'), (a, b)) ∈ R × S. It follows by the definition of R × S that (a, a'), (a', a) ∈ R, so a = a' by the antisymmetry of R. In the same way, we prove that b = b'.
 - (c) Transitivity: suppose that ((a, b), (a', b')), ((a', b'), (a'', b'')) ∈ R × S. By the definition of R × S, we deduce that (a, a'), (a', a'') ∈ R, and hence (a, a'') ∈ R by the transitivity of R. In the same way, (b, b'') ∈ S. Hence, by definition, ((a, b), (a'', b'')) ∈ R × S.

To show that the product of two lattices is again a lattice, let $(a_1, b_1), (a_2, b_2)$ be two elements of $A \times B$. Let $a_3 := a_1 \wedge a_2$ and $b_3 = b_1 \wedge b_2$. Then $(a_3, b_3) = (a_1, b_1) \wedge (a_2, b_2)$: by definition, $a_3 \leq a_1$ and $a_3 \leq a_2$, and the same for the *b*'s. On the other hand, if $(a_4, b_4) \leq (a_1, b_1)$ and $(a_4, b_4) \leq (a_2, b_2)$, then, since $a_4 \leq a_1$ and $a_4 \leq a_2$, we know that $a_4 \leq a_3$, and in the same way $b_4 \leq b_3$. Hence, (a_3, b_3) is the infimum of (a_1, b_1) and (a_2, b_2) . The existence and uniqueness of the supremum is proved analogously.

2. Suppose that gcd(n,m) = 1. Then for every $d \mid nm$ there are uniquely determined $d_1 \mid n$ and $d_2 \mid m$ such that $d = d_1d_2$. Consider the map $f : Div(n) \times Div(m) \to Div(nm)$, mapping (d_1, d_2) to d_1d_2 . The aforementioned fact shows that this map is a bijection. Moreover, $((d_1, d_2), (m_1, m_2)) \in (Div(n), |) \times (Div(m), |)$ iff $d_1 \mid m_1$ and $d_2 \mid m_2$, which in this case means that $d_1d_2 \mid m_1m_2$. This shows that the mapping f is a bijection between $(Div(n), |) \times (Div(m), |)$ and Div(nm).

We will now show that if $gcd(n,m) \neq 1$, then $|Div(n) \times Div(m)| \neq |Div(nm)|$. This shows that the structures of the lattices given are not the same. Let $\sigma(n) := |Div(n)|$. We saw above that $\sigma(mn) = \sigma(m)\sigma(n)$ if m and n are coprime. Hence, $\sigma(\prod_{i=1}^{t} p_i^{a_i}) = \prod_{i=1}^{t} \sigma(p_i^{a_i})$, wherein the p_i are distinct primes, and the a_i are positive integers. It is easily seen that $\sigma(p_i^{a_i}) = (a_i + 1)$, so that $\sigma(\prod_{i=1}^{t} p_i^{a_i}) = \prod_{i=1}^{t} (a_i + 1)$. So, if $n = p^a n'$ and $m = p^b m'$ where p is a prime not dividing m'n', then $\sigma(mn) = (a+b+1)\sigma(m'n') \neq (a+1)\sigma(n')(b+1)\sigma(m')$, if both a and b are larger than one. This shows the assertion.