Exercise 5.1.

1. Here is a possible realization of G_f :

- 2. We can without loss of generality assume that $S = n$ for some n. Since f is a function, every node in G_f has exactly one outgoing edge: if there is a node with no outgoing edge, then the function is not defined for the element of n belonging to this node which is impossible; if there are more than two outgoing edges, then the element corresponding to the node is mapped to at least two different elements, and hence f cannot be a function. Since f is surjective, each node v has an incoming edge, since there is an element mapped to the element corresponding to v by f . Finally, since f is injective, each node has exactly one incoming edge, since otherwise there are two elements of n mapped to the same element.
- 3. We proceed by induction on *n*: If $n = 1$, then G_f is a selfloop with one node, hence it is a disjoint union of cycles. Suppose now that $n > 1$. Let v_0 be an arbitrary node in G_f . Let v_1 be the node obtained by moving from v_0 along its outgoing edge; let v_2 be the node obtained by moving from v_1 along its outgoing edge; in general, let v_i , $i \geq 1$, be the node obtained by moving from v_{i-1} along its outgoing edge. Since the set $S = n$ is finite, there are i and j, $i < j$, such that $v_i = v_j$. Let i be the smallest index with this property. Then $i = 0$, since otherwise there are two incoming edges into v_i , one from v_{i-1} , and one from v_{i-1} . It follows that $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{i-1} \rightarrow v_0$ is a cycle. We remove it from G_f . The resulting graph is the graph of a bijective map on $S - \{v_0, \ldots, v_{j-1}\}\$, and hence is a disjoint union of cycles by the induction hypothesis. It follows that G_f is a disjoint union of cycles.
- 4. If G_f is a cycle of length *n*, then $f^n = id$: if $f(v_i) = v_{i+1}$ for $i = 0, \ldots, n-2$, and $f(v_{n-1}) = v_0$, then $f^2(v_i) = v_{(i+2) \bmod n}$, $f^3(v_i) = v_{(i+3) \bmod n}$, and in general $f^k(v_i) =$ $v_{(i+k) \bmod n}$. Therefore, $f^n = id$, and $f^j \neq id$ for $1 \leq j < n$. Now let f be a general permutation on a set with *n* elements, say \underline{n} . By the previous part we know that G_f is a disjoint union of cycles. Hence, there is a partition $S_1 \sqcup S_2 \sqcup \cdots \sqcup S_t$ of \underline{n} such that f restricted to S_i is a cycle, i.e., the elements of S_i , say a_1, \ldots, a_ℓ , can be ordered in such a way that $f(a_j) = a_{(j+1) \bmod l}$. Let f_i denote the function f restricted in S_i . We can write f as $f(x) = \delta_1(x) f_1(x) + \cdots + \delta_t(x) f_t(x)$, where $\delta_i(x) = 1$ if $x \in S_i$, and $\delta_i(x) = 0$ otherwise. It follows that $f^k(x) = \delta_1(x) f_1^k(x) + \cdots + \delta_t(x) f_t^k(x)$, and hence $f^k = id$ iff $f_i^k = id$ for all k. If n_1, n_2, \ldots, n_t denote the sizes of S_1, S_2, \ldots, S_k , respectively, then by the first part we proved above, we know that $f_i^{n_i} = \text{id}$ and that n_i is the smallest positive integer with the property. It follows that for all n divisible by

 $N := \text{lcm}(n_1, n_2, \dots, n_t)$ we have that $f^n = id$, and N is the smallest positive integer with this property.

Exercise 5.2. Let A be the matrix representation of S and B be that of R, as suggested in the exercise. By definition, $S \circ R = \{(i, j) \mid \exists \ell : (i, \ell) \in S \land (\ell, j) \in R\}$. Therefore, $(i, j) \in S \circ R$ iff there exists ℓ such that $A_{i\ell} \wedge B_{\ell j}$ is one, which is the case iff $\vee_{\ell=1}^n A_{i\ell} \wedge B_{\ell j}$ is one.

Exercise 5.3. Here is a list in terms of their Hasse diagrams:

Exercise 5.4.

- 1. We have the following:
	- (a) Reflexivity: since $(a, a) \in R$ for $a \in A$, and $(b, b) \in B$ for $b \in B$, we have $((a, b), (a, b)) \in S \times R$, by definition of $S \times R$.
	- (b) Antisymmetry: suppose that $((a, b), (a', b')) \in R \times S$ and $((a', b'), (a, b)) \in R \times S$. It follows by the definition of $R \times S$ that $(a, a'), (a', a) \in R$, so $a = a'$ by the antisymmetry of R. In the same way, we prove that $b = b'$.
	- (c) Transitivity: suppose that $((a, b), (a', b')), ((a', b'), (a'', b'')) \in R \times S$. By the definition of $R \times S$, we deduce that $(a, a'), (a', a'') \in R$, and hence $(a, a'') \in R$ by the transitivity of R. In the same way, $(b, b'') \in S$. Hence, by definition, $((a, b), (a'', b'')) \in R \times S.$

To show that the product of two lattices is again a lattice, let $(a_1, b_1), (a_2, b_2)$ be two elements of $A \times B$. Let $a_3 := a_1 \wedge a_2$ and $b_3 = b_1 \wedge b_2$. Then $(a_3, b_3) = (a_1, b_1) \wedge (a_2, b_2)$: by definition, $a_3 \le a_1$ and $a_3 \le a_2$, and the same for the b's. On the other hand, if $(a_4, b_4) \leq (a_1, b_1)$ and $(a_4, b_4) \leq (a_2, b_2)$, then, since $a_4 \leq a_1$ and $a_4 \leq a_2$, we know that $a_4 \le a_3$, and in the same way $b_4 \le b_3$. Hence, (a_3, b_3) is the infimum of (a_1, b_1) and (a_2, b_2) . The existence and uniqueness of the supremum is proved analogously.

2. Suppose that $gcd(n, m) = 1$. Then for every d | nm there are uniquely determined $d_1 \mid n$ and $d_2 \mid m$ such that $d = d_1 d_2$. Consider the map $f : Div(n) \times Div(m) \rightarrow Div(nm)$, mapping (d_1, d_2) to d_1d_2 . The aforementioned fact shows that this map is a bijection. Moreover, $((d_1, d_2), (m_1, m_2)) \in (Div(n), |) \times (Div(m), |)$ iff $d_1 | m_1$ and $d_2 | m_2$, which in this case means that $d_1d_2 \mid m_1m_2$. This shows that the mapping f is a bijection between $(Div(n), I) \times (Div(m), I)$ and $Div(nm)$.

We will now show that if $gcd(n, m) \neq 1$, then $|Div(n) \times Div(m)| \neq |Div(nm)|$. This shows that the structures of the lattices given are not the same. Let $\sigma(n) := |Div(n)|$. We saw above that $\sigma(mn) = \sigma(m)\sigma(n)$ if m and n are coprime. Hence, $\sigma(\prod_{i=1}^{t} p_i^{a_i}) =$ $\prod_{i=1}^t \sigma(p_i^{a_i})$, wherein the p_i are distinct primes, and the a_i are positive integers. It is easily seen that $\sigma(p_i^{a_i}) = (a_i + 1)$, so that $\sigma(\prod_{i=1}^t p_i^{a_i}) = \prod_{i=1}^t (a_i + 1)$. So, if $n = p^a n^b$ and $m = p^bm'$ where p is a prime not dividing $m'n'$, then $\sigma(mn) = (a+b+1)\sigma(m'n') \neq 0$ $(a+1)\sigma(n')(b+1)\sigma(m')$, if both a and b are larger than one. This shows the assertion.