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Exercise 5.1.

1. Here is a possible realization of Gf :
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2. We can without loss of generality assume that S = n for some n. Since f is a function,
every node in Gf has exactly one outgoing edge: if there is a node with no outgoing
edge, then the function is not defined for the element of n belonging to this node which
is impossible; if there are more than two outgoing edges, then the element correspond-
ing to the node is mapped to at least two different elements, and hence f cannot be
a function. Since f is surjective, each node v has an incoming edge, since there is an
element mapped to the element corresponding to v by f . Finally, since f is injective,
each node has exactly one incoming edge, since otherwise there are two elements of n
mapped to the same element.

3. We proceed by induction on n: If n = 1, then Gf is a selfloop with one node, hence
it is a disjoint union of cycles. Suppose now that n > 1. Let v0 be an arbitrary node
in Gf . Let v1 be the node obtained by moving from v0 along its outgoing edge; let v2

be the node obtained by moving from v1 along its outgoing edge; in general, let vi,
i ≥ 1, be the node obtained by moving from vi−1 along its outgoing edge. Since the set
S = n is finite, there are i and j, i < j, such that vi = vj . Let i be the smallest index
with this property. Then i = 0, since otherwise there are two incoming edges into vi,
one from vi−1, and one from vj−1. It follows that v0 → v1 → · · · → vj−1 → v0 is a
cycle. We remove it from Gf . The resulting graph is the graph of a bijective map on
S − {v0, . . . , vj−1}, and hence is a disjoint union of cycles by the induction hypothesis.
It follows that Gf is a disjoint union of cycles.

4. If Gf is a cycle of length n, then fn = id: if f(vi) = vi+1 for i = 0, . . . , n − 2, and
f(vn−1) = v0, then f2(vi) = v(i+2) mod n, f3(vi) = v(i+3) mod n, and in general fk(vi) =
v(i+k) mod n. Therefore, fn = id, and f j 6= id for 1 ≤ j < n. Now let f be a general
permutation on a set with n elements, say n. By the previous part we know that Gf

is a disjoint union of cycles. Hence, there is a partition S1 t S2 t · · · t St of n such
that f restricted to Si is a cycle, i.e., the elements of Si, say a1, . . . , a`, can be ordered
in such a way that f(aj) = a(j+1) mod `. Let fi denote the function f restricted in Si.
We can write f as f(x) = δ1(x)f1(x) + · · · + δt(x)ft(x), where δi(x) = 1 if x ∈ Si,
and δi(x) = 0 otherwise. It follows that fk(x) = δ1(x)fk

1 (x) + · · · + δt(x)fk
t (x), and

hence fk = id iff fk
i = id for all k. If n1, n2, . . . , nt denote the sizes of S1, S2, . . . , Sk,

respectively, then by the first part we proved above, we know that fni
i = id and that ni

is the smallest positive integer with the property. It follows that for all n divisible by
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N := lcm(n1, n2, . . . , nt) we have that fn = id, and N is the smallest positive integer
with this property.

Exercise 5.2. Let A be the matrix representation of S and B be that of R, as suggested in the
exercise. By definition, S ◦ R = {(i, j) | ∃` : (i, `) ∈ S ∧ (`, j) ∈ R}. Therefore, (i, j) ∈ S ◦ R
iff there exists ` such that Ai` ∧B`j is one, which is the case iff ∨n

`=1Ai` ∧B`j is one.

Exercise 5.3. Here is a list in terms of their Hasse diagrams:

Exercise 5.4.

1. We have the following:

(a) Reflexivity: since (a, a) ∈ R for a ∈ A, and (b, b) ∈ B for b ∈ B, we have
((a, b), (a, b)) ∈ S ×R, by definition of S ×R.

(b) Antisymmetry: suppose that ((a, b), (a′, b′)) ∈ R × S and ((a′, b′), (a, b)) ∈ R × S.
It follows by the definition of R × S that (a, a′), (a′, a) ∈ R, so a = a′ by the
antisymmetry of R. In the same way, we prove that b = b′.

(c) Transitivity: suppose that ((a, b), (a′, b′)), ((a′, b′), (a′′, b′′)) ∈ R × S. By the def-
inition of R × S, we deduce that (a, a′), (a′, a′′) ∈ R, and hence (a, a′′) ∈ R
by the transitivity of R. In the same way, (b, b′′) ∈ S. Hence, by definition,
((a, b), (a′′, b′′)) ∈ R× S.

To show that the product of two lattices is again a lattice, let (a1, b1), (a2, b2) be two
elements of A×B. Let a3 := a1 ∧ a2 and b3 = b1 ∧ b2. Then (a3, b3) = (a1, b1) ∧ (a2, b2):
by definition, a3 ≤ a1 and a3 ≤ a2, and the same for the b’s. On the other hand, if
(a4, b4) ≤ (a1, b1) and (a4, b4) ≤ (a2, b2), then, since a4 ≤ a1 and a4 ≤ a2, we know that
a4 ≤ a3, and in the same way b4 ≤ b3. Hence, (a3, b3) is the infimum of (a1, b1) and
(a2, b2). The existence and uniqueness of the supremum is proved analogously.
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2. Suppose that gcd(n, m) = 1. Then for every d | nm there are uniquely determined
d1 | n and d2 | m such that d = d1d2. Consider the map f : Div(n)×Div(m) → Div(nm),
mapping (d1, d2) to d1d2. The aforementioned fact shows that this map is a bijection.
Moreover, ((d1, d2), (m1,m2)) ∈ (Div(n), |)× (Div(m), |) iff d1 | m1 and d2 | m2, which
in this case means that d1d2 | m1m2. This shows that the mapping f is a bijection
between (Div(n), |)× (Div(m), |) and Div(nm).

We will now show that if gcd(n, m) 6= 1, then |Div(n) × Div(m)| 6= |Div(nm)|. This
shows that the structures of the lattices given are not the same. Let σ(n) := |Div(n)|.
We saw above that σ(mn) = σ(m)σ(n) if m and n are coprime. Hence, σ(

∏t
i=1 pai

i ) =∏t
i=1 σ(pai

i ), wherein the pi are distinct primes, and the ai are positive integers. It is
easily seen that σ(pai

i ) = (ai + 1), so that σ(
∏t

i=1 pai
i ) =

∏t
i=1(ai + 1). So, if n = pan′

and m = pbm′ where p is a prime not dividing m′n′, then σ(mn) = (a+ b+1)σ(m′n′) 6=
(a + 1)σ(n′)(b + 1)σ(m′), if both a and b are larger than one. This shows the assertion.
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