Exercise Sheet 6

Exercise 6.1. In this exercise, we design a 2-error-correcting BCH code of length 13, and dimension 6 over \mathbb{F}_3 .

- 1. If ω denotes a primitive 13th root of unity over \mathbb{F}_3 , show that the smallest extension field of \mathbb{F}_3 in which ω lives has degree 3.
- 2. Let $g_i(x)$ denote the minimal polynomial of ω^i over \mathbb{F}_3 . What is a generator polynomial of a 2-error correcting BCH code of length 13 and dimension 6 in terms of the $g_i(x)$?
- 3. Now we want to calculate the polynomials $g_i(x)$. First, find an irreducible polynomial of degree 3 over \mathbb{F}_3 .
- 4. Use the irreducible polynomial obtained in the previous part to find a primitive element α in a degree 3 extension of \mathbb{F}_3 , and show that we can choose $\omega := \alpha^2$. Calculate the minimal polynomials $g_0(x), g_1(x), g_2(x), g_4(x), g_7(x)$, and show that this is the complete list of $g_i(x)$.
- 5. Now compute the generator polynomial for the code.
- 6. Suppose that we have received the word y := (0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0). Apply the decoding algorithm that we saw in the lecture to decode this string to its nearest codeword.