
Lecture 4

Evaluation Codes

4.1. Definition

Suppose that M is a set of “functions” which acts on a set S = {P1, . . . , Pn}, in the following sense: each φ ∈ M
maps each element Pi of P to an element of Fq. Moreover, we assume that M carries the structure of an Fq-vector
space compatible with the evaluation map, i.e., we can form linear combinations aφ+ bψ for a, b ∈ Fq and φ, ψ ∈M ,
such a combination belongs to M , and its effect on a point Pi is aφ(Pi) + bψ(Pi).

In such a situation, we are able to construct a q-ary code of length n, which we call an evaluation code via
(M,S,Fq). The exact definition is as follows: we map M to Fn

q via

ι : M → Fn
q , φ 7→ (φ(P1), . . . , φ(Pn)). (4.1)

The evaluation code in question is the image of this map.
Despite their appearance, evaluation codes are not peculiar, as the following simple result suggests:

Proposition 4.1. Any linear code is an evaluation code.

Proof. Consider a generator matrix G of an [n, k, d]q-code. In this case, the vector space M will be the dual space
(Fk

q )∗ of Fk
q , i.e., the Fq-space of all linear forms on Fk

q , and the set S will be the set of columns of G. The encoding
of an element v of Fk

q is given as v · G. Denoting by φ the linear form corresponding to v, the encoding of v equals
(φ(c1), . . . , φ(cn)).

What can we say about the dimension and minimum distance of such a code? The answer is: essentially nothing
meaningful, if we don’t have an “interpretation” for M and for S. But at least we can rephrase the problem.

Proposition 4.2. Let C be an evaluation code via (M,S,Fq).

(1) the dimension ofC is dimFq (M)−dimFq (T ), where T is the subspace ofM for which all the function disappear
on all the points of S.

(2) Suppose that all φ ∈ M which do not identically disappear on S have the property that they have at most t
zeros on S. Then the minimum distance of C is at least n− t.

Proof. The kernel of ι from (4.1) is exactly equal to T , so the assertion on the dimension follows. The assertion on
the minimum distance is trivial.

Construction of “good” codes amounts to finding M and S such that M has many elements, points of S separate
elements of M , and elements of M don’t have too many zeros on S. What M and S are is anybody’s best guess.
A good method often uses interpretations for M and S so that the evaluation problem becomes some well-studied
problem within that interpretation.

For example, remember the Hadamard codes we mentioned in one of the earlier lectures. This code is an evaluation
code via (M,S,F2), where M is the dual space of Fk

2 , and S is the set of all nonzero elements of Fk
2 . Any linear code
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(0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 1, 0, 0, 1, 1)
(0, 0, 1, 0, 0, 1, 1, 0)
(0, 1, 0, 0, 1, 1, 0, 1)
(1, 0, 0, 1, 1, 0, 1, 0)
(0, 0, 1, 1, 0, 1, 0, 1)
(0, 1, 1, 0, 1, 0, 1, 1)
(1, 1, 0, 1, 0, 1, 1, 1)
(1, 0, 1, 0, 1, 1, 1, 1)
(0, 1, 0, 1, 1, 1, 1, 0)
(1, 0, 1, 1, 1, 1, 0, 0)
(0, 1, 1, 1, 1, 0, 0, 0)
(1, 1, 1, 1, 0, 0, 0, 1)
(1, 1, 1, 0, 0, 0, 1, 0)
(1, 1, 0, 0, 0, 1, 0, 0)
(1, 0, 0, 0, 1, 0, 0, 1)

(0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 1, 1, 0, 0, 1)
(0, 0, 1, 1, 0, 0, 1, 0)
(0, 0, 1, 0, 1, 0, 1, 1)
(0, 1, 1, 0, 0, 1, 0, 0)
(0, 1, 1, 1, 1, 1, 0, 1)
(0, 1, 0, 1, 0, 1, 1, 0)
(0, 1, 0, 0, 1, 1, 1, 1)
(1, 1, 0, 0, 1, 0, 0, 0)
(1, 1, 0, 1, 0, 0, 0, 1)
(1, 1, 1, 1, 1, 0, 1, 0)
(1, 1, 1, 0, 0, 0, 1, 1)
(1, 0, 1, 0, 1, 1, 0, 0)
(1, 0, 1, 1, 0, 1, 0, 1)
(1, 0, 0, 1, 1, 1, 1, 0)
(1, 0, 0, 0, 0, 1, 1, 1)

(a) (b)

Figure 4.1: (a) The codewords of the evaluation code of Example 4.5, and (b) the codewords of the dual code

of dimension k is equivalent to a punctured version of this code. The dimension of the code is k, since a nonzero linear
form cannot vanish on all elements of Fk

2 . The minimum distance of the code is 2k−1, since a linear form has exactly
2k−1 − 1 zeros among the nonzero elements of Fk

2 .
In the next few lectures we will give ample examples of evaluation codes.

4.2. Cyclic Codes

4.2.1. Simple Evaluation Codes

In our first construction we consider M as the dual space of Fk
2 , and S as {1, ω, . . . , ωn−1} in Fq, where q = 2k. If S

does not contain a basis of Fq/F2, then there will be a linear form vanishing on all the points of S, an event we would
like to exclude. If S contains a basis, and n = k, then the evaluation code is equal to Fk

2 , hence trivial. We therefore
assume that the elements of S generate Fq as an F2-space, and that n > k.

It is more convenient to consider the dual code of this particular evaluation code. Consider the space of all “binary
relations” on S. These are the set of all binary (a0, . . . , an−1) such that

∑
i aiω

i = 0. This vector space is the dual
space of the evaluation code we are considering. In fact, if

∑
i aiϕ(ωi) = 0 for all linear forms ϕ, then by linearity∑

i aiω
i = 0, and vice versa.

Lemma 4.3. Let C be the evaluation code via (M,S,F2) as described above. Then C⊥ is the set (of coefficients)
of all binary polynomials f of degree < n such that f(ω) = 0. Moreover, any such polynomial is a multiple of the
minimal polynomial g of ω over F2.

If I denotes the ideal g(x)F2[x], and I<n denotes the space of polynomials in I of degree less than n, then this
space is exactly the dual of the evaluation code. The dimension of this space is n − deg(g) (why?), so that the
dimension of the evaluation code is deg(g).

As for the minimum distance, we can prove the following.

Lemma 4.4. Suppose that any subset of S of size n− d+ 1 contains a basis of Fq/F2. Then the minimum distance of
the evaluation code is at least d.

Proof. Suppose that there is a nonzero word of weight d− 1 or less. This word has at least n− d+ 1 zeros, so there
is a nonzero linear form that vanishes on a subset of S of size at least n − d + 1. But such a subset contains a basis,
and a nonzero linear form cannot vanish on every element of a basis. This yields the desired contradiction.

Example 4.5. Let q = 16, Fq = F2[x]/(f) with f(x) = x4 + x + 1, and ω := x mod f . The minimal polynomial
of ω is by definition x4 + x + 1, and hence I is generatd by this polynomial. The codewords of this code and the
codewords of the dual code are given in Figure 4.1 As can be seen, the code and its dual are both [8, 4, 3]2-codes.
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4.2.2. Cyclic Codes

Suppose now that ω is an nth root of unity, i.e., ωn = 1. Then the minimal polynomial of ω is a divisor of xn − 1. Let
F` = F2(ω) be the smallest extension of F2 containing ω. We would like to study the evaluation code via (Mω, S,F2),
where Mω = (F`)∗. In this case, the evaluation map is injective, since S contains a basis of F` (by construction).

Such evaluation codes are cyclic, i.e., (c0, . . . , cn−1) is in the code iff (cn−1, c0, . . . , cn−2) is. To see this, note
that if (a0, . . . , an−1) is in the dual code, then

∑
i aiω

i = 0, so

0 = ω
∑

i

aiω
i =

∑
i

aiω
i+1 = an−1 + a0ω + · · ·+ an−2ω

n−1.

Hence (a0, . . . , an−1) is in the dual code iff its cyclic shift is. A moment’s thought reveals that therefore the original
code is cyclic as well.

The evaluation codes given above are sometimes called irreducible cyclic codes. This means that they are cyclic,
and there is no subspace of them that is cyclic (this needs a proof, of course). Moreover, it turns out that any cyclic code
is a direct sum of such simple evaluation codes (or irreducible cyclic codes). All these facts are naturally embedded in
the representation theory of finite groups (in this case: cyclic groups), but we do not have the time to touch upon this
very interesting tangent.

We will now proceed by proving some useful facts about cyclic codes.

Theorem 4.6. Let C be a cyclic code of length n. Then there is a unique monic divisor g(x) of xn − 1 in F2[x] such
that C is the set of (coefficients of) polynomials of the form f(x)g(x) mod xn − 1.

Conversely, for any polynomial g(x) the set of polynomials f(x)g(x) mod xn − 1 forms a cyclic code.

Proof. Identify a vector (a0, a1, . . . , an−1) in Fn
2 with the polynomial a(x) = a0 + a1x+ · · ·+ an−1x

n−1. Since C
is cyclic, a(x) ∈ C iff xa(x) mod xn − 1 is in C. Let g(x) be a monic polynomial of lowest degree in C. Then g(x)
divides any a(x) in C: otherwise, there is 0 6= r(x) of degree lower than deg(g) such that a(x) = g(x)q(x) + r(x)
for some polynomial q(x), and hence r(x) ∈ C since a(x) and g(x)q(x) are. This also shows that g(x) is unique
(otherwise it divides another monic polynomial of same degree, which cannot be).

The polynomial g(x) also divides xn − 1, since otherwise xn − 1 = u(x)g(x) + v(x) for some nonzero u(x), and
some v(x) of degree less than g(x), and hence v(x) ∈ C, contradicting the minimality of g(x).

Conversely, if C = {f(x)g(x) mod xn−1 mod f(x) ∈ F2[x]}, then with any h(x) ∈ C also xh(x) mod xn−1
is in C, and the code is cyclic.

The polynomial g(x) from the previous theorem is called the generator polynomial of the code C. Obviously, all
polynomials in the code are of the form g(x)f(x) with deg(f) strictly less than n− deg(g) and all such polynomials
are distinct. Hence, we have

Corollary 4.7. If C is a cyclic code with generator polynomial g(x) and length n, then dim(C) = n− deg(g).

4.2.3. Minimum Distance of Cyclic Codes

How about the minimum distance of a cyclic code? Suppose that n is odd. Then there exists a primitive nth root of
unity ω over F2. This means that ωi = 1 iff i ≡ 0 mod n. (Why?) The following theorem gives a lower bound on the
minimum distance of a cyclic code given by its generator polynomial.

Theorem 4.8. Suppose that the generator polynomial g of a cyclic code satisfies g(ωi) = · · · = g(ωi+d−2) = 0, for
some i and d. Then the minimum distance of the code is at least d.

Proof. For simplicity we will assume that i = 0. The reader can verify that trivial modifications make the proof work
for the case of arbitrary i. Consider the matrix

H =


1 1 1 · · · 1 1
1 ω ω2 · · · ωn−2 ωn−1

1 ω2 ω4 · · · ω2(n−2) ω2(n−1)

...
...

...
. . .

...
...

1 ωd−2 ω2(d−2) · · · ω(d−2)(n−2) ω(d−2)(n−1)

 .

Because g is the generator polynomial of C, if x = (x0, . . . , xn−1) is in C, then

H · x> = 0,
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which means that the code C ′ (over Fq = F2(ω)) which has H as a check matrix contains C. Note that any d − 1
columns of H are independent, since they form a Vandermonde matrix. Hence, the minimum distance of C ′ is at least
d, which implies that the minimum distance of C is at least d.

Example 4.9. (1) [Repetition code] Let n be an integer (not necessarily odd), and g = xn−1 +xn−2 + · · ·+x+1.
The corresponding code has dimension 1, and contains only the all-one and the all-zero codewords. It is the
repetition code of length n, with minimum distance n.

(2) [Parity code] Let n be an integer, and g = x− 1. The corresponding code has dimension n− 1. Any codeword
is a multiple of x − 1, and hence vanishes at 1, when considered as a polynomial. This means that the sum of
all coordinates of any codeword is zero, and the code is the parity code of minimum distance 2.

(3) [Hamming code] Let n = 7, and g(x) = x3 + x+ 1. If ω is a root of g, then ω is a primitive 7th root of unity,
and the other roots of g are ω2 and ω4. This code has dimension 4. By the previous theorem, the minimum
distance of this code is at least 3. In fact, the minimum distance is exactly 3 (why?), and the code is equivalent
to the [7, 4, 3]2-Hamming code, i.e., after a possible one-time permutation of the codewords, we obtain the
[7, 4, 3]2-Hamming code.

(4) (Optimal 2-error correcting code of length 15) Let n = 15. The polynomial x15 − 1 has the factorization

x15 − 1 = (x− 1)(x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1)(x2 + x+ 1).

Let g(x) = (x4 + x + 1)(x4 + x3 + x2 + x + 1). Let ω be a root of x4 + x + 1. Then ω is a primitive 15th
root of unity, and the other roots of this polynomial are ω2, ω4, and ω8. The roots of x4 + x3 + x2 + x+ 1 are
ω3, ω6, ω9, and ω12. Hence, g(x) has ω, ω2, ω3, ω4 as its roots, so that the minimum distance of C is at least 5
(so C is 2-error correcting). The dimension of C is 15− 8 = 7, so C is a [15, 7,≥ 5]2-code.

One can check that the minimum distance of this code is indeed 5, and that the code is optimal, in the sense that
it is not possible to find a binary linear code of shorter length and same dimension and minimum distance.

4.2.4. BCH Codes

Suppose that we are given an odd length n, and a designed minimum distance d, and we are asked to construct a
cyclic code of length n and minimum distance at least d. The following procedure would construct such a code using
Theorem 4.8. The code obtained this way is called a BCH-code, named after its inventors Bose, Ray-Chaudhuri, and
Hocquenghem.

To construct the code, we first factor the polynomial xn − 1 over F2. Let ω denote a primitive nth root of unity
over F2. Then each of these factors has a set of zeros of the form {ωi1 , . . . , ωit}, if the factor is of degree t. Next,
we multiply factors together so that the resulting product has a “consecutive” set of roots, i.e., a subset of roots of
the form {ωi, ωi+1, . . . , ωi+d−2}. Then Theorem 4.8 implies that the minimum distance of the code is at least d. Of
course, while combining the factors of xn − 1, we need to ensure that we combine a minimum number of such factors
so as to obtain the consecutive set of zeros. This can be at times challenging, with the problems compounded by the
fact that the root of unity ω can be replaced by any other primitive nth root of unity, thereby adding to the challenge
of checking whether a particular combination of factors is good.

We will learn how to decode such BCH codes in the next lecture.

4.3. Weight Distribution of Irreducible Cyclic Codes

The weight distribution of irreducible cyclic codes has astonishing relationships to other areas of mathematics, most
notably, algebraic geometry. In this section, we will describe one such connection. We will only sketch the proofs,
and leave the detailed presentation to the exercises. To fix the notation, we let ω be a primitive nth root of unity over
F2, and let F2k = F2(ω). Throughout this section, we denote by Cn the simple evaluation code via (M,S,F2), where
M is the dual space of F2k , and S = {1, . . . , ωn−1}.

Starting point of our journey is the trace map. Recall that the trace of F2k to F2 of an element α ∈ F2k is
Tr(α) = α+ α2 + · · ·+ α2k−1

.

Lemma 4.10. Let ϕ be a linear form of F2k as an F2-space. Then there is an α ∈ F2k such that for all x ∈ F2k , we
have ϕ(x) = Tr(αx).

Proof. (Sketch) It is easy to show that Tr(αx) and Tr(βx) are different linear forms on F2k if α and β are different.
Hence, the set of all Tr(αx) coincides with the set of all linear forms of F2k .
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Lemma 4.11. If an element α ∈ F2k has trace zero, then there exists β ∈ F2k such that α = β2 − β.

Proof. (Sketch) The map β 7→ β2 − β is a linear map of F2k . Moreover, its image is clearly contained in the space
of elements of trace 0. Being a quadratic polynomial over a field, it is at most 2-to-1, so its image has at least 2k−1

elements. Hence, its image is the set of elements of trace 0.

Lemma 4.12.
Cn = {(Tr(α),Tr(αω), . . . ,Tr(αωn−1)) | α ∈ F2k}.

Proof. Follows from the two previous lemmas.

Proposition 4.13. Notations being as in the previous lemma, let m = (2k − 1)/n, and let Nα denote the number of
F2k -solutions of the equation αxm = y2 − y for which x 6= 0. Then the weight distribution of Cn is∑

α∈F2k

xn−Nα/2myNα/2m.

Proof. The number of zeros of the vector (Tr(α),Tr(αω), . . . ,Tr(αωn−1)) is the number of times Tr(αωi) is zero,
i.e., the number of i such that there exists y with αωi = y2 − y, or equivalently, the number of i such that there exists
y with α(τ i)m = y2 − y, where τ is a primitive element of F2k .

The equation αxm = y2 − y describes a curve over the field F2k . There is an area of algebraic geometry which
studies the number of points of curves over finite fields. We will briefly touch upon this area later in the class.

Example 4.14. (1) (Hadamard codes) Let k be a positive integer, and n = 2k − 1. Then m = 1, and we need to
look at the solution of the equation αx = y2 − y. For any nonzero α, the number of solutions of this equation
with x 6= 0 is 2 · (2k−1 − 1). Hence, the weight of the corresponding codeword is 2k−1. The code in question
is nothing but the Hadamard code.

(2) (Lower bounds from elliptic cuves) Let n = 21. Then k = 6, i.e., the smallest extension of F2 containing a
primitive 21st root of unity is F26 = F64. In this case m = (2k − 1)/n = 3, and the weight distribution of
the irreducible cyclic code C21 is associated with the number of points of the curve αx3 = y2 − y, for which
6= 0. The case x = 0 gives two points, so we need to subtract 2 from the total number of points. This curve is
called an elliptic curve if α 6= 0. By a general theorem from algebraic geometry, the number of points of such
a curve cannot exceed 63 + 2 · 8 = 79. As a result, a nonzero codeword in C21 has at least 21− 77/6 nonzero
positions, which means that the weight of a nonzero codeword in C21 has weight at least 8. This makes the code
a [21, 6,≥ 8]2-code. Using the Griesmer bound (or checking Andries Brouwer’s tables) shows that this code is
optimal. (This result also could have been obtained differently, for example using Theorem 4.8.) On the other
hand, the number of points of an elliptic curve over F64 cannot be less than 63 − 2 · 8 = 47, so a codeword in
C21 cannot have weight more than 21− 47/6, i.e., more than 13. In fact, an inspection yields that this code has
only weights 0,8, and 12.

4.4. Reed-Muller Codes

In this case M consists of m-variate polynomial functions with total degree ≤ r, and S consists of Fm
2 . This means

that we can assume the local degree of the polynomials in M in each of the variables to be at most 1. The action of the
polynomials on the elements of Fm

2 is through evaluation. This code is called a Reed-Muller code of order r, denoted
R(r,m). Obviously we can assume that r ≤ m.

Whyshould this give a reasonable code? This is because polynomials of bounded degree tend to have few zeros.
More precisely, we have the following:

Lemma 4.15. A nonzero m-variate polynomial in F2[X1, . . . , Xm] of total degree ≤ r ≤ m has at most 2m − 2m−r

zeros. In particular, the minimum distance of R(r,m) is 2m−r.

Proof. The proof proceeds by induction on m. For m = 1 the assertion is obvious. Let us prove the assertion for
m+ 1, assuming its correctness for m.

Let f denote the polynomial in question, and let r denote its degree. We have

f(x1, . . . , xm+1) =
r∑

`=0

x`
m+1Q`(x1, . . . , xm).
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The evaluation of f is equal to the sum of the evaluations of the x`
m+1Q`(x1, . . . , xm). If ` > 0, then this polynomial

vanishes on all points with xm+1 = 0, and its evaluation is equal to that of Q` on the complementary set of points.
The evaluation of Q0 on both these sets is the same. Hence, the evaluation of f can be written as (u|u + v), where
u is the evaluation of an m-variate polynomial of degree ≤ r and v is the evaluation of an m-variate polynomial of
degree < r. The induction hypothesis applies to both u and v, and implies that the weight of u is at least 2m−r if u
is nonzero, and the weight of v is at least 2m−r+1 if v is nonzero. If u = 0 and v 6= 0, the weight of (u|u + v) is
thus at least 2m−r+1. If u 6= 0 and u + v = 0, then u = v and the weight of (u|u + v) is at least 2m−r+1. If u 6= 0
and u + v 6= 0, then the weights of u and u + v are at least 2m−r each, and hence the weight of (u|u + v) is at least
2m−r+1.

The second part of the theorem follows, since the polynomial x1 · · ·xr has only 2m−r nonzero evaluations (take
x1 = · · · = xr = 1, and the other xi arbitrary).

What about the dimension of R(r,m)? An m-variate polynomial that vanishes on all the points of the Fm
2 must be

the zero polynomial (proof?) Hence, the dimension of R(r,m) is the dimension of the space of polynomials of degree
≤ r, which is

r∑
i=0

(
m

i

)
.

How about asymptotic properties of these codes? It is easily seen that the rate is (for large r and m)

R ∼ 2m(h(r/m)−1),

and the relative distance (i.e., minimum distance dvided by the length) is 2−r. The relative distance goes to zero if we
let r go to infinity. If we letm go to infinity, and keep r fixed, then the relative distance is bounded from below, but the
dimension will be polynomial in m, while the length is exponential in m, so that the rate goes to zero as log(N)c/N ,
where N is the block length, and c is some constant (depending on r).

Hence, asymptotically, these codes are not very good.


