Lecture 6
Reed-Solomon Codes

In this class we will study a very important class of evaluation codes: The Reed-Solomon codes. Reed-Solomon codes
are being used as outer codes in many communication systems. Many of today’s ubiquitous devices such as disk drives
or CD/DVD players rely heavily on the error correction capabilities of Reed-Solomon codes. This class introduces the
basic concepts, and some abstract decoding algorithms. Later lectures will focus on efficient implementations of these
algorithms.

6.1. Reed-Solomon Codes as Evaluation Codes

LetF,[x] <) denote the IF,-space of univariate polynomials of degree less than k over F,. Further, let S = {x1,...,2,}
be a subset of F,. We consider the evaluation code with parameters (F,[z]<, S, F,), where the action of F,[z]<j on
S is given by polynomial evaluation. In other words, the code we are considering is the image of the homomorphism:

Fq[z]<k - FZ7

We call this image a Reed-Solomon code (or RS code), after the two inventors Irving Reed and Gus Solomon of these
codes. If we want to be very precise, then we denote this code by RS(k; z1, ..., z,).

Why should this code be good? The reason is, that we can control the number of zeros in a codeword, using the
following well-known theorem.

6.1)

Theorem 6.1. A nonzero polynomial f of degree r over a field F has at most r roots in F.

This means that if & < n, then the image of a nonzero polynomial f € [F,[x] < has at most k — 1 zero coordinates,
and hence the minimum distance of the corresponding code is at least n — k + 1. Moreover, by the same token, no
nonzero polynomial can be mapped to the zero codeword, hence the mapping is injective, hence the dimension of the
code is k. Since by the Singleton inequality the minimum distance cannot be larger than n — k + 1, we see that the
minimum distance is equal to n — k + 1.

Theorem 6.2. If k < n, then the code RS(k;x1, ..., x,) has dimension k and minimum distance n — k + 1. The code
is thus MDS.
It is clear that the following matrix Vandermonde matrix is a generator matrix for RS(k; z1, ..., zy):
1 1 1 e 1
T Z9 T3 ce e

RS-codes, as described here, are non-systematic. They can be made systematic in a variety of ways, some of which
we will describe when we study the displacement method.
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6.2. The Welch-Berlekamp Algorithm

The decoding problem is the following. We are given aword y = (y1, . ..,y») € Fy with a promise that it has distance
< (n — k)/2 from a g-ary RS-code C' = RS(k; z1,...,x,). The task is to find the closest codeword in C to y. We
call this codeword ¢, and call f the corresponding polynomial in F,,[z] <x. In other words, for all 4, ¢; = f(z;).

We use the concept of an error locator described in the previous section. Let us call a polynomial h(x) an error
locator if h(x;) = 0 if and only if the vector y and its closest codeword c differ in the i-th position. Finding the error
locator is tantamount to decoding, since we can discard the positions in error, and perform an erasure decoding on the
rest of the vector y.

What do we know about h(z)? We know that its degree is at most (n — k) /2, and that

Vi=1,...,n: (f(x;) —y) - h(z;) =0.
or stated differently
Vi=1,...,n: g(z;) —yih(z;) =0, (6.2)
where g(z) := f(x)h(z) is a polynomial of degree < k + (n — k)/2 = (n + k) /2. It does not seem like this equation
can give us anything useful, since we only know the y;. However, it turns out that any nontrivial solution to (6.2) with

deg(h) < (n —k)/2 and deg(g) < (n + k)/2 will solve the decoding problem, i.e., for any nonzero pair (g, h) with
the given degree constraints we have f = g/h!

Theorem 6.3. Suppose that (g,h) € F[x] < (nir) /2 X Fg[T]<(n—r)/2 is a nonzero pair of polynomials satisfying (6.2).
Then h(z) is an error locator, g is divisible by h, and f(x) = g(x)/h(x).

Proof. Consider the polynomial F'(x) := g(x) — f(2)h(x) € Fy[2]<(s+k)/2- Note that for all i we have
F(x;) = g(xi) — f(zi)h(@i) = h(x:)(yi — f(@3).

So, if i is such that y; = f(x;), or in other words, if 7 is not in error, then F'(z;) = 0. Since there are at most (n — k) /2
error positions, there are at least (n + k) /2 positions not in error, so F' has at least (n + k)/2 zeros. But its degree is
less than (n + k)/2. So, F(z) is identically zero, and hence g(x) = f(z)h(z). The fact that h(x) is an error locator
follows from the above displayed equation. O

Does a nonzero solution to (6.2) exist, and if so, how can we calculate it? Suppose that g(x) = go + g1 +
cee g(n+k)/2_1x(”+k)/2’1, and h(xz) = ho + hiz + -+ + h(n_k)/Qx("’k)/z, with unknown coefficients g; and h;.
Then (6.2) translates to the following system of linear equations:

g0
9
Lo I e —yray" 2 g
1 xg --- pintk)/2-1 Y —yato ] _yzx(nfk)/2 (n+k)/2—1
. ? . . ? =0. (6.3)
1, e g L ho
hy
Pin—k)/2

This is a homogeneous system of n equations in (n + k)/2 4+ (n — k)/2 + 1 = n + 1 unknowns, so it has a nonzero
solution. Moreover, such a solution can be found by solving this system using, for example, the Gaussian elimination
algorithm. However, since the matrix corresponding to this system is structured, there are much faster methods for its
solution. We will review such methods later in the context of the displacement method.

Summarizing, the Welch-Berlekamp (WB) decoder can be described as follows:

1. Find a nonzero solution of the system (6.3) and form the polynomials g(x) and h(x).

2. Compute f(z) = g(x)/h(x).
3. The closest codeword to the received word is (f(z1),. .., f(zn))-

The WB-decoder has an interesting geometric interpretation. Suppose that we are given n pairs (x;, y;) where the
x; are different, and we are asked to fit a polynomial of degree < k through these points so that it passes through as
many of the given points as possible. Then, as long as at least (n + k)/2 of the points are “correct,” i.e., lie on the
same polynomial of degree < k, we can find the polynomial using the WB-decoder. The situation is exemplified in
Figure 6.1 for the case n = 13, and k = 4.
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Figure 6.1: (a) We are given 13 points of which we know that at least 9 lie on a third degree polynomial; (b) a plot of
the unique polynomial passing through 9 of the points. It reveals the four outliers.

6.3. Decoding More Errors: List Decoding

We know that for a given RS-code with parameters [n, k,n — k + 1],, we can uniquely decode up to e = (n — k)/2
errors. What happens, though, when the number of errors is larger? In that case we cannot possibly hope for unique
decoding in general, but is it possible to at least find all codewords that are with a given Hamming-radius of the
received word?

Given the received vector y, and a real number 7, we would like to find all codewords of distance < 7n from y.
Phrased this way, the WB-decoder solves the problem when 7 = (1 — R)/2, R = k/n being the rate of the code. Can
we do better?

Let us change our view a little, and consider the received vector as a set of points (z;,y;) € Fg with pairwise
distinct z-coordinates. Our task would be to find all polynomials f(z) € F,[z]<, passing through at least n — 71 of
the points.

Suppose that there are ¢ such polynomials, f1(z), ..., f¢(x). Then all the points (z;,y;) would be zeros of

Qz,y) = (y — fi(z)) - (y = fa(2)) -~ (y = fe(2)) - E(2),

with a polynomial E(x) of degree < e, which is a summary for all the points that are in error for all the f;’s. If we
had Q(z,y) from somewhere, then we could find the polynomials f;(z),..., f¢(x) through finding all factors of the
form y — g(z) of Q(z, y).

This is the Ansatz we are going to use: finding a nonzero polynomial Q(z,y) = Qu(x)y’ + Qo1 (z)y* L1 +--- +
Q1(x)y + Qo(x), with polynomials Q;(x) of degree < e + (¢ — i)(k — 1) such that

Vi=1,...,n: Q(x;,y;) =0. (6.4)

(We have replaced F(x) with Q,(x) for consistency reasons.) Under certain conditions on 7, k, and n, it turns out
that any such polynomial @) will have the property that Q(z, f(x)) = 0if y — f(x) passes through at least n — 7n of
the points (z;,y;). This idea for doing a list decoding is due to M. Sudan, and is known as the Sudan list-decoding
algorithm.

Theorem 6.4. Suppose that Q(x,y) = Q(z)y* + Zf;é Qi(x)y* with polynomials Q;(x) of degree less than e +
(¢ — i)(k — 1), and that Q(x,y) satisfies the equations in (6.4). Then any polynomial f(x) € Fz]<r for which
(f(x1),..., f(xn)) has a distance of at most n — e — £(k — 1) of the received vector y satisfies Q(x, f(x)) = 0.

Proof. Suppose that f(x) is such that ¢ = (f(x1),..., f(z,)) has a distance < n — e — £(k — 1) from the received
word. Consider the polynomial F'(z) := Q(x, f(x)). Then the degree of F'(x) is less than e + ¢(k — 1). Moreover,

This means that F'(z) vanishes at all positions ¢ at which ¢ and y agree. By assumption, ¢ and y agree on at least
e + {(k — 1) positions. But the degree of F'(x) is less than e 4+ £(k — 1), which shows that F'(z) = 0. O
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Figure 6.2: The upper curve is the relative error correction capability of Sudan’s algorithm versus the rate of the code.
It consists of pairwise linear functions. The lower curve is the plot of 1 — v/2R.

Does a nonzero polynomial Q(z,y) satisfying (6.4) exist, and if so, how can we find it? As in the case of the

WB-decoder, this problem is reduced to linear algebra. Let us denote by Ag, A1, ..., Ay the column vector consisting
of the unknown coefficients of Qg, @1, . . . , Q¢, respectively. Furthermore, let
]_ 1 P x?71 yl O o O 0
d-1 0 g -~ 0 0
1 zo -+ x5
V= ) ) ] ) , D = : o : : . (6.5)
S " : 0 0 - yosq O
d—1 n
1 =z, s 0 0 ... 0 Un

Then (6.4) is equivalent to

Ay
Agq
(DVe | D" Werior |-+ | DV o1y | Veqeh-y) - f =0. (6.6)
Ay
Ao
The number of unknowns in this system of equations is (¢ + 1)e + @(k — 1). The number of equations is n.

Hence, if n is smaller than the number of unknowns, we will have a nonzero solution of this system. We therefore
require

nS(ﬂ—&-l)e-&-@

(k—1)—1. 6.7
From Theorem 6.4 we know that we would be able to find all codewords of distance at most n — e — £(k — 1) — 1 from
the received word. The task is to maximize this value, subject to the constraint in (6.7), i.e., to minimize e + ¢(k — 1)
subject to those constraints. The minimal value for e subject to (6.7) is n/(£+1) — £(k —1)/2+ 1, so that the minimal
value fore + ¢(k —1)isn/({+ 1)+ 4(k —1)/2 + 1.

If we phrase everything relative to n, and assume that n is large, we obtain that the algorithm is capable of
correcting a fraction of ,

1

i+l 2

T =
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Figure 6.3: Demonstration of Sudan’s algorithm. (a) We are asked to identify all polynomials of degree at most 2 that
pass through at least 9 of the 21 points shown. (b) We find two quadratic polynomials, and three spurious points which
don’t lie on any of the quadratic curves.

errors with a list of size at most ¢, provided that e/n = 1/(¢ + 1) — £R/2 is positive, i.e., provided that R < ﬁ
For each ¢ we obtain a fraction of recoverable errors from the previous displayed equation. Figure 6.2 summarizes a
plot of this function, which consists of pairwise linear functions. Also plotted is 1 — v/2R, which approximates the
error correction capability very well for low rates. As can be seen, the new algorithm is better than the WB-algorithm

if the rate is lower than 1/3.

6.4. A Brief Note on Factoring

Sudan’s list decoding algorithm and the algorithm of Guruswami-Sudan described below need to find factors of the
form y — f(z) of Q(x,y). One possibility to do this is to factor Q(z,y) completely. This can be done in polynomial
time using randomized algorithms. A different approach is to pointedly look for factors of the form y — f(x). Several
researchers have dealt with this problem, among them Augot-Pecquet, Gao-Shokrollahi, Hgholdt-Nielsen, and Roth-
Riickenstein.

There are essentially two approaches: one of them is to work in a large finite field F,~, and specialize x by a
generator of that field. In other words, we take an irreducible polynomial p(x) of sufficiently large degree m, and
reduce Q(x, y) modulo that polynomial to obtain a polynomial to obtain a univariate polynomial in y over Fym. Next,
we find roots of that univariate polynomial to obtain factors of the form y — (f(x) mod p(x)). If the degree of p(x) is
larger than the largest degree of f(x) possible, then we can read off the right roots.

The other approach uses something very similar to Newton iteration. We specialize the variable x to some element
Zo in the field, for example 0. Next, we find the roots of Q(0, y). Let the roots be yg, y1, - - - , y¢. Then we know that if
y — f(z) is a factor of Q(z,y), then f(0) is one of these values. If Q(0,y) does not have multiple roots, then, fixing
£(0), we can determine the higher coefficients of f(x) iteratively. Details of this algorithm will be provided in the
exercises.

If Q(0, y) has multiple roots, then other techniques have to be used, which we are not going to discuss here.

6.5. The List Decoding Algorithm of Guruswami-Sudan

How can we correct more errors than with the algorithm of Sudan. Guruswami and Sudan had the following idea to
do this: suppose that we look for a polynomial that passes through all the points (z;, y;) with some given multiplicity.
In other words, we are looking for a polynomial of the form

Qz,y) = (y — (@) (y = f2())" - (y = fe(x))" - E(x)
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Figure 6.4: Comparison between the error correction capabilities of Sudan’s algorithm (lower curve) and the algorithm
of Guruswami and Sudan. The latter is better than the former and better than the WB-algorithm on the entire range
for R.

describing the set of points. This polynomial has the property that for all the points (x;, y;), we have

Qa+ziy+u) =Y. . ¢y, 6.8)
5>r s+h=j
for some qil;c € F,. Suppose now that we have found a nonzero polynomial Q(z,y) satisfying (6.8). Consider
F(z) := Q(x, f(x)) and suppose that i and the evaluation vector of f () agree on at least ¢ positions. Then F(z) has
rt roots, since each agreement point gives rise to a zero of F'(x) of multiplicity . If we can prove that we can choose
Q(z,y) such that the degree of F'(x) is less than rt, then this shows that F'(x) = 0, and hence (y — f(x))" divides
Q(z,y).

To guarantee that the degree of Q(x, f(x)) is small, we need to design Q(z, y) properly. For that, we introduce the
notion of the (a, b)-degree of a monomial z*y, defined as ai + bj. The normal degree is then simply the (1, 1)-degree.
The degree of Q(x, f(z)) is thus at most the (1, k — 1)-degree of Q(z,y).

Our task is to find a nonzero polynomial Q(x, y) satisfying (6.8) and having a (1, k — 1)-degree that is as small as

possible. For this, let us write
Qz,y) =Y Y aua’y”
i>0 j+k=i

with unknown coefficients g;;. Then the coefficients of Q(z + x;, y + y;) are linear forms in g;, and Condition (6.8)
translates to 7(r + 1)/2 homogeneous equations for the g;;, one for each of the “missing” monomials. In total, there
are nr(r + 1) /2 equations.

If we assume that the (1,k — 1)-weighted degree of Q(z,y) is less than or equal to D, then the number of
monomials of which @ is potentially composed equals

D [(D—i)/(k—1)] D p i

1 =
> 2 2 {k . 1J
=0 7=0 =0

Y
-MU
LA

Thus, if we assume that
D(D+1) S nr(r +1)
2(k—-1) — 2

+1, (6.9)

then we can guarantee the existence of a nonzero Q(z, y) satisfying (6.8), and any polynomial f(z) whose evaluation
has an agreement of at least (D + 1)/r with the received vector has the property that (y — f(x))" divides Q(z,y).
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Therefore, we would like to minimize D subject to (6.9). We loosen that condition, and require that

2 2
D >n(T+1),
2k—1) =" 2

leading to D > (r + 1)4/n(k — 1). Choosing D to be equal to the expression on the right will lead to an agreement

of at least +1
T (Vnlk—1) + 1).

r

Phrasing everything in terms of the error correction radius 7, this means that this algorithm is capable to find a short
list of all polynomials that are within a relative distance of

1
- "R
'S

of the received word. Since there is no a-priori bound on r, in the limit, as r grows large, we obtain an algorithm that
can “correct” up to a fraction of
1-VR

errors.

Figure 6.3 shows a plot of the error correction capability of this algorithm versus the algorithm of Sudan. As can
be seen, the new algorithm is better than the old one on the entire range for R. Moreover, the new algorithm is also
better than the WB-algorithm on the entire range.

We finish this section with some comments on the computational complexity of this algorithm. We have to solve a
system of equations with O(nr?) unknowns. Using normal Gaussian elimination, we would need O(n3r®) operations.
However, the matrix we are dealing with has structure, and using various techniques (such as the displacement method
discussed later in the class), one can solve the system in O(n2r4) operations. On the other hand, we have to choose r
to be very large in order to fully benefiting from the algorithm, which may render the algorithm ineffective in practice.
A Master’s Thesis by Julie Marc, done at our lab, studies this algorithm from the point of view of practicability.
Interested readers may want to consult that thesis (which will be available on our web site soon).

6.6. Further Developments

A natural question to ask is whether the 1 — V'R bound of Guruswami-Sudan is the best possible, i.e., if there are
examples in which the size of the list is too large when the number of errors is beyond this bound. The answer to this
question is not known. What we do know is that extensions of Reed-Solomon codes over very large alphabets have list
decoding algorithms that can decode well beyond the 1 — v/R bound — almost as far as 1 — R, which is the ultimate
error correcting radius. More precisely, if the alphabet size is g™, then one can design codes of length at most ¢ and
decoding algorithms that would be able to correct up to a fraction of 1 — ™/R™ errors. For m = 1, we recover the
Guruswami-Sudan bound, and as m goes to infinity, the error correction radius converges to 1 — R.

The first such algorithm (with a slightly worse error correction radius than given above) was provided by to
Parvaresh and Vardy, and it was vastly extended by Guruswami and Rudra to get the error correction radius reported
above. These algorithms were inspired by another algorithm, due to Bleichenbacher, Kiyayias, and Yung. The latter
algorithm studies Reed-Solomon for which the length is significantly smaller than the alphabet size, and provides error
correction algorithms when these codes are used on the g-ary symmetric channel. These algorithms can correct almost
up to a fraction of 1 — R of errors, with very small error probabilities. An extension of these algorithms, and a detailed
analysis was provided by Brown, Minder, and the author, and is available from our web site.



