
Lecture 10

AG Codes II

In the last lecture we saw how to construct AG codes defined as evaluation of bivariate polynomials on a curve in the
plane F2

q . The block length of such codes does not exceed q2, so for constructing longer codes, we need to generalize
the construction. This is going to be the topic of this lecture.

10.1. Irreducible Curves and Bézout’s Theorem

For what follows, the following informal definition of a curve is sufficient: a curve in Fm
q is the common zeroset of

m − 1 nonconstant polynomials f1(x1, x2), f2(x2, x3), . . . , fm−1(xm−1, xm) ∈ Fq[x1, . . . , xm]. The degree of this
curve is defined as the product of the total degrees of f1, f2, . . . , fm−1. The curve is called irreducible if all the fi are
irreducible polynomials.

Crucial for the construction of AG codes in this more general setting is the following theorem of Bézout:

Theorem 10.1 (Bézout’s Theorem). Suppose that the curve given by

f1(x1, x2) = 0
f2(x2, x3) = 0

...
...

ft−1(xt−1, xt) = 0

is irreducible, and that g ∈ Fq[x1, . . . , xt] is a polynomial that cannot be expressed in the form h1f1 + · · ·+ht−1ft−1

for h1, . . . , ht−1 ∈ Fq[x1, . . . , xt]. Then the number of intersection points of the zeroset of g and the curve is at most
deg(g) deg(f1) · · ·deg(ft−1).

A proof of a more general version of this theorem can be found, e.g., in Chapter 1 of “Algebraic Geometry” by
Hartshorne, or in Chapter 8 of “Algebraic Complexity Theory” by Bürgisser et al.

It remains to be show how to test whether a polynomial g ∈ Fq[x1, . . . , xm] has the property that it cannot be
expressed in the form h1f1 + · · · + hm−1fm−1 for h1, . . . , hm−1 ∈ Fq[x1, . . . , xm]. As in the last section, we can
assume w.l.o.g. that each fi is of the form ax

di+1
i+1 + hi, wherein degxi+1

(hi) < di+1, and di+1 is the total degree of
fi. Consider the vector space

Γ :=
d2−1⊕
i2=0

d3−1⊕
i3=0

· · ·
dt−1⊕
it=0

Fq[x1]xi2
2 · · ·x

it
t .

If g ∈ Γ and it is nonzero, then it cannot be represented as h1f1 + · · ·ht−1ft−1, since the local degrees of g
in x2, . . . , xt is smaller than the maximum of the local degrees of the fj in these variables. Moreover, any g ∈
Fq[x1, . . . , xt] has the property that there exist h1, . . . , ht−1 such that g + h1f1 + · · ·+ ht−1ft−1 ∈ Γ.
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For m > (t− 1)q, let

Γ<m :=
d2−1⊕
i2=0

d3−1⊕
i3=0

· · ·
dt−1⊕
it=0

Fq[x1]m−(i2+···+it)x
i2
2 · · ·x

it
t .

Then any nonzero g ∈ Γ<m satisfies the property of Bézout’s Theorem. Moreover, the dimension of Γ<m is

d2−1∑
i2=0

· · ·
dt−1∑
it=0

m− (i2 + · · ·+ it) = (m− 1)D −D
d2 + · · ·+ dt − t− 1

2
,

where D = d2 · · · dt.
Suppose now that g ∈ Γ<m, that X has n points, and that d2 · · · dt(m− 1) < n, and consider the evaluation code

via (Γ<m, X; Fq). By Bézout’s theorem, we obtain a code with parameters[
n, (m− 1)D −D

∑t
2 dt − t− 1

2
, n− (m− 1)D

]
q

. (10.1)

10.2. Example: Hermitian Towers

Consider the curve X in F3
q2 given by

yq+1 = xq − x

xq+1 = zq − z.

The number of points of this curve, i.e., the number of (x, y, z) ∈ F3
q2 satisfying the above equations, is q4: For each

of the q2 possible values for y, there are q values for x, and for each of these x-values there are q values for z. Each
of the equations in the curve is irreducible (by Eisenstein’s Criterion) and hence the curve is irreducible. Applying the
machinery of the last section with d2 = d3 = q + 1, we obtain a code with parameters[

q4, (q + 1)2 (m− q) , q4 − (q + 1)2(m− 1)
]
q2 .

In general, let us look at the Hermitian tower

xq+1
2 = xq

1 − x1

xq+1
3 = xq

2 − x2

...
...

xq+1
t = xq

t−1 − xt−1.

This tower defines a set X of qt+1 points in Ft
q2 . The curve is irreducible, since at every step the polynomial used

is irreducible (use Eisenstein’s Criterion). If m > (t − 1)q and (m − 1)(q + 1)t−1 < qt+1, we obtain a code with
parameters [

qt+1, (q + 1)t−1

(
m− q

t− 1
2

)
, qt+1 − (m− 1)(q + 1)t−1

]
q2

.

Asymptotically, when we let t go to infinity, we obtain codes for which the relative minimum distance δ and the rate
R satisfy the following relation

δ + R ≥ 1− (q + 1)t−1

qt+1

(
q(t− 1)

2
− 1

)
= 1−

(
1 +

1
q

)t−1 1
q2

(
q(t− 1)

2
− 1

)
.

Unfortunately, the right hand side of the above inequality converges to−∞, so that we do not get obtain asymptotically
good codes (or at least, we cannot prove that we do).
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Figure 10.1: Construction of codes beyond the GV bound. The line corresponds to the equation x + y = 1− γq, and
the curve corresponds to the GV bound.

10.3. Codes Beyond the GV-Bound

Fundamentally, a construction like the one described above is not sufficient to find asymptotically good codes, though
it is a first step in this direction. Let us see, why: Suppose that for any of the qx possibilities for x1, we can find
d2 possibilities for x2, d3 possibilities for x3, and finally dt possibilities for xt. Altogether, this would give rise to
qd1d2 · · · dt points, i.e., in 10.1, we have n ≤ qd1d2 · · · dt. Referring to (10.1), let

g :=
d2 + · · ·+ dt − t− 1

2
.

Then, we obtain a code with parameters [qD, (m− 1)D − gD, qD − (m− 1)D]q. Asymptotically, this gives a code
for which the rate R and the relative distance δ satisfy R + δ ≥ 1− g/q. But, g goes to infinity as the tower grows, so
this does not give asymptotically good codes.

The presentation we have given here is a very restricted view of AG codes. In fact, the actual construction of such
codes uses a different approach for which we would have to develop some parts of the language of algebraic geometry,
which we are not going to do here.

Given a curve X defined over Fq, we can associate to X an invariant, called the (geometric) genus of the curve. In
the case of a plane algebraic curve with no singularities defined by a bivariate polynomial of degree d, this quantity is
simply (d− 1)(d− 2)/2, a number we encountered in the last lecture.

We can introduce the notion of irreducibility of a curve: for a curve defined by polynomial equations in many
variables, irreducibility coincides with the notion of the ideal generated by the polynomials to be prime. Moreover,
we can associate with arbitrarily defined irreducible curves an analogue of the vector space Γ<m, and the notion of
degree. The dimension of Γ<m, the degree d, and the genus g of nonsingular curves are intimately related: if m is
large enough, then the dimension of Γ<m is (m− 1)d− g + 1. This is often called the Theorem of Riemann. Putting
things together, this would give us a code with parameters

[n, (m− 1)d− g + 1, n− (m− 1)d]q,

where n is the number of points of the curve over Fq. The rate and the relative distance of the code satisfy

R + δ ≥ 1− g − 1
n

.

Let us define γq as the lower limit, taken over all curves for which the number of points goes to infinity, of the quantity
g/n. Then we know that, asymptotically, the points (R, δ) with R + δ = 1− γq are achievable in the sense that there
are sequences of codes of rate R and relative distance at least δ for which the block length goes to infinity. If the point
(R, δ) lies above the GV bound, then we have shown the existence of codes beyond the GV bound. (Technically, we
need also to show that the rate R is achievable for the code, since for the codes we have built the dimension is of the
form (m− 1)d− g + 1, but if d = o(g), then this is will be OK.)

When does the line 1− γq − x intersect the GV curve

f(x) = 1− x logq(q − 1) + x logq(x) + (1− x) logq(1− x)?

For this, we calculate the derivative of f(x) which is

f ′(x) = logq

(
x

1− x

)
− logq(q − 1).
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This value is −1 if x = x0 = (q − 1)/(2q − 1). The equation of the tangent line to the GV bound at x0 is

x + y = x0 + f(x0).

It turns out that if 1− γq > x0 + f(x0), then we obtain codes beyond the GV bound.
Tsfasman, Vladut, and Zink were the first to show that if q is a square, then γq ≤ 1√

q−1 . They used a special class
of curves, called “modular curves” to show this result. Using this result, they showed that if q is a square and

x0 + f(x0) ≤ 1− 1
√

q − 1
,

then their codes are above the GV bound. The situation is depicted in Figure 10.1: Between the intersection points of
the line x+ y = 1−γq and the GV bound we obtain codes that are genuinely above the GV bound. Solving the above
equation, it turns out that q has to be larger than or equal to 49.

Theorem 10.2 (Tsfasman, Vladut, and Zink). If q is a square larger than or equal to 49, then one can construct AG
codes over Fq that are beyond the GV bound.

Later, Drinfeld and Vladut showed that γq ≥ 1√
q−1 , thereby showing the optimality of the curves constructed by

Tsfasman et al.
A description of codes derived from such curves has been vastly simplified by Garcia and Stichtenoth. They have

provided an explicit tower of “function fields” and calculated the genus and and the number of points explicitly. The
tower is given by

zq
2 + z2 = xq+1

1

zq
3 + z3 = xq+1

2

...
...

where at each step, xn = zn/xn−1.


