Lecture 13
Message Passing Algorithms

13.1. Introduction

In this lecture, we will focus on the belief propagation algon, which belongs to the class of message passing
algorithms. Message passing algorithms are iterativedlegalgorithms based on the code’s Tanner graph. In each
iteration, messages are exchanged between the variabés aod the check nodes along the edges. Each iteration
starts with check nodes processing the incoming messagesdatg to some processing rule and transmitting the
output, then proceeds with variable nodes processing tiarimg messages according to some other processing rule
and transmitting the output. Note that a message sent aloedge does not depend on the message received on that
same edge in the previous half iteration. That is, only esicinformation is passed. This property is common to
good message passing algorithms.

13.2. Belief Propagation

In belief propagation, messages sent along edges are icoradidensities on the bit value corresponding to the végiab
node that the edge is incident to. Since these densitiesssamee non-zero values only at points= 0 andz = 1

(call these valueg, andp,; respectively), they can be represented by a log-likelihatid, logZ°. It is assumed that
each message is conditionally independent of all the othersthe random variables on wh|ch different messages
depend are independent. This assumption would hold truseiti’t iteration of the algorithm if all nodes appearing
in any computation graph of dep# are distinct , i.e. if the code’s Tanner graph has girth adtl2a. In practice,
dependence does not affect performance drastically: Septhat the computation graph closes upon itself after
iterations. In this case the output of the — 1)*¢ iteration can be thought of as a new sequence of observatioich
incorporates less uncertainty than the original sequence.

Consider the message passed from variable nottecheck node: in the [* iteration. This is a probability
distribution on the bit that is associated with, given all the observations of its neaghlexcept. Under the cycle-
free assumption fariterations, the computation graph for nodeiill be a tree of depti2/ (Fig.13.1).

Lecture by Amin Shokrollahi
Scribes by Eren Sasoglu

2 Modern Coding Theory, Spring 2006

Figure 13.1: Computation graph of depth 4. All nodes appearing in thelgnaust be distinct in order for the
independence assumption to hold.

Figure 13.2: Processing at the variable nodes

13.2.1. Processing at the Variable Nodes

Consider Fig.13.2 wherk corresponds to the channel observation (in log-likelihfaych). Check node = 2...d
sends the variable node a log-likelihood ratio on the valoéthe variable node, conditioned on its observations.

Prlz = 0]y]

i =log 51t
b= o8 e = Tly)

l;'s can be thought of as metrics on noisy observations.dioreover, these observations are assumed to be inde-
pendent when conditioned an The variable node computes the log-likelihood ratisepresenting the density of its
valuez, given all the conditionally independent noisy observagig. i.e.

Priz =0y1 ... ydl
Priz=1ly1...yd)

m = log

Lecture 13: Message Passing Algorithms 3

Figure 13.3: Processing at the check nodes

We have
Prlx=0,y1...y4
Pre =0l = Lzt
Priz =0]- Prly; ...yalz =0]
Priy; ... yd
Prlz = 0] -TIL, Priyile = 0]
Priy; ... yd)
and similarly,
Prixz=1]- Hj: Prlyilz =1]
Prix=1y1...yd) = Priy: 1 7]
i = = = = DP7[y1|T:0] = PT['/L‘:O‘ZH]
AssumingPr{z = 0] = Prjz = 1] =1/2we haver =71 = Fi=1],1 and therefore
Prie =0y _] Lriz = lu]
Priz =1ly1 ... yd) e Priz = 1]y,
Prixz =0Jy Yd) d
= 1..-Yd
m = lo = l; 13.1
gPr[x:1|y1...yd] ; ()

Therefore, when the messages are in log-likelihood forepibtimal probabilistic processing rule at the variable
nodes is the summation of all incoming messages.
13.2.2. Processing at the Check Nodes
Consider Fig.13.3. Lej; denote the noisy observation on #& summand in the parity check equation and define
p;i(0) := Pr[z; = 0]y, pi(1) := Pr[z; = 1|y;] i=1...d

Let S denote the event that the parity-check equation isfeati Then the outgoing message willle= log%
where

p(k) := Prlxgs1 = k|S,y1...ya) = Prizi + ...+ 2xqa = Ely1 ... yd] k=0,1

Sincep is a density on thenod2 sum of independent random variables, it is the cyclic camioh of p;'s. Therefore
letting .# denote the Fourier transform, we have

d
Fp} = Hy{pv}

4 Modern Coding Theory, Spring 2006
Fourier transform of a functiofi overZ, is also defined ovef, and is given by
F{FH0) = f(0) + f(1)
F{fH1) = f(0) = f(1)
Since we have probability distributions as our functions,
F{p}0) =1
d
F{py(1) = p0)—p(1) = [[(m:0) - pi(1)) (13.2)
=1

Recall that the received messages are in the log-likelifiood I; = log % By direct computation we get

) —pi(1) = S b (13.3)
Di Di Tl an 9 .
and m 1
e — m
p(0) —p(1) = i tanh 5 (13.4)
Substituting 13.3 and 13.4 in 13.2 we have
m d l;
tanh? = 71;[1tanh§'
1+], tanh &
m = logtilizitenbs (13.5)
1 —]J;- tanh 3

13.3. Binary Erasure Channel

Probabilistic decoding problem reduces to a combinatepriatblem in the BEC case. This is due to the fact that there
is no uncertainty in a bit’s value unless the received vaumierasure.

13.3.1. Variable node processing rule

Recall that the variable node processing rule is simply sation of the incoming log-likelihood ratios. Without loss
of generality, it can be assumed that the channel outputtikelihood ratios instead of bit values. Then channel
output alphabet# and message alphabgtare equal.#=0={+0, 0, —co}, where the values correspond(pe

and1 respectively in the usual BEC case. At time= 0, the only input that a variable node will receive will be
the outputl; € ¢ of the channel, which will be passed to the neighboring chresddes. Notice that variable node

processing rule
m=3

_— { 0 if ;=0 Vi
T B if pe{li...la} B#0
One might ask what happens to the sum when we have -bothand —oc in the incoming message set. This in
fact is an impossible situation since the messages passit belief propagation are consistentf{ac implies
Pr[z = 1] =1 and a—cc implies Pr[z = 0] = 1).

Observe that the above processing rule would be valid fonagsage alphabet'={—p, 0, 3}. Therefore taking
the channel input alphabet to §é, —1}, the channel output alphabet to B&{1, 0 -1} with the correspondence
1+ 0,-1+«< 1,0 < e, and the message alphabet to.l#6=¢, the variable node processing rule is equivalent to
sending the bit value if any of the received messages is Bom-and sending a zero otherwise.

reduces to

Lecture 13: Message Passing Algorithms 5

Figure 13.4: Iterative decoding for BEC. In each iteration, first find @ck node of degree 1 (left), then remove all
the edges emanating from the neighboring variable nodetjrig

13.3.2. Check node processing rule

1+]] tanh %‘

Recall that at the check nodes the output message was dederagcording ten = log I [[tanh " Note that
— anh 3
tanh(4+00) =
tanh(0) = 0
tanh(—o0) = -1

Therefore when# = {+o0, 0, —oo}, the above processing rule is equivalent to

1+ 17, sgnly)
1-TI, sortl:)

m = log

which reduces to

0 if Jistl;=0
m =< +oo I; #0Viand thereis an even number afots
—o0 I; # 0Viand there is an odd number obdfs

Note that if we again take the channel input alphaet 1, —1}, the parity-check constraint becomgp, m; = 1.
Therefore taking#Z=0={1,0, —1}, the above processing rule is equivalent to

=TI
i

With the above two reductions, switching back to the repred®n.7 = {0, 1}, belief propagation algorithm on the
BEC is equivalent to the following decoding algorithm:

Step 1. Pass all the received (non-erasure) bit values tiemariable nodes to the check nodes along the edges.
Step 2. At the check node side, store the XOR of the incomitsgdnid delete the edges along which bit values came.
Step 3. Find a check node of residual degree 1, and sendated3tvalue to the variable nodet is connected to.

Step 4. Delete all edges emanating from

Step 5. Repeat Steps 3 and 4.

Fig.13.4 shows one iteration of the algorithm defined abd@early, we need a non-zero fraction of the check
nodes to have degree 1 in each iteration of decoding in codecover all variable nodes.

