
Lecture 13

Message Passing Algorithms

13.1. Introduction

In this lecture, we will focus on the belief propagation algorithm, which belongs to the class of message passing
algorithms. Message passing algorithms are iterative decoding algorithms based on the code’s Tanner graph. In each
iteration, messages are exchanged between the variable nodes and the check nodes along the edges. Each iteration
starts with check nodes processing the incoming messages according to some processing rule and transmitting the
output , then proceeds with variable nodes processing the incoming messages according to some other processing rule
and transmitting the output. Note that a message sent along an edge does not depend on the message received on that
same edge in the previous half iteration. That is, only extrinsic information is passed. This property is common to
good message passing algorithms.

13.2. Belief Propagation

In belief propagation, messages sent along edges are conditional densities on the bit value corresponding to the variable
node that the edge is incident to. Since these densities can assume non-zero values only at pointsx = 0 andx = 1
(call these valuesp0 andp1 respectively), they can be represented by a log-likelihoodratio, log p0

p1

. It is assumed that
each message is conditionally independent of all the others, i.e. the random variables on which different messages
depend are independent. This assumption would hold true in the lth iteration of the algorithm if all nodes appearing
in any computation graph of depth2l are distinct , i.e. if the code’s Tanner graph has girth at least 2l . In practice,
dependence does not affect performance drastically: Suppose that the computation graph closes upon itself afterm
iterations. In this case the output of the(m− 1)st iteration can be thought of as a new sequence of observationswhich
incorporates less uncertainty than the original sequence.

Consider the message passed from variable nodev to check nodec in the lth iteration. This is a probability
distribution on the bit thatv is associated with, given all the observations of its neighbors exceptc. Under the cycle-
free assumption forl iterations, the computation graph for nodev will be a tree of depth2l (Fig.13.1).

Lecture by Amin Shokrollahi
Scribes by Eren Sasoglu

2 Modern Coding Theory, Spring 2006

Figure 13.1: Computation graph of depth 4. All nodes appearing in the graph must be distinct in order for the
independence assumption to hold.

Figure 13.2: Processing at the variable nodes

13.2.1. Processing at the Variable Nodes

Consider Fig.13.2 wherel1 corresponds to the channel observation (in log-likelihoodform). Check nodei = 2 . . . d
sends the variable node a log-likelihood ratio on the valuex of the variable node, conditioned on its observations.

li = log
Pr[x = 0|yi]

Pr[x = 1|yi]
i = 1 . . . d

li’s can be thought of as metrics on noisy observations ofx. Moreover, these observations are assumed to be inde-
pendent when conditioned onx. The variable node computes the log-likelihood ratiom representing the density of its
valuex, given all the conditionally independent noisy observationsyi. i.e.

m = log
Pr[x = 0|y1 . . . yd]

Pr[x = 1|y1 . . . yd]

Lecture 13: Message Passing Algorithms 3

Figure 13.3: Processing at the check nodes

We have

Pr[x = 0|y1 . . . yd] =
Pr[x = 0, y1 . . . yd]

Pr[y1 . . . yd]

=
Pr[x = 0] · Pr[y1 . . . yd|x = 0]

Pr[y1 . . . yd]

=
Pr[x = 0] ·

∏d

i=1 Pr[yi|x = 0]

Pr[y1 . . . yd]

and similarly,

Pr[x = 1|y1 . . . yd] =
Pr[x = 1] ·

∏d

i=1 Pr[yi|x = 1]

Pr[y1 . . . yd]

AssumingPr[x = 0] = Pr[x = 1] = 1/2 we havePr[yi|x=0]
Pr[yi|x=1] = Pr[x=0|yi]

Pr[x=1|yi]
and therefore

Pr[x = 0|y1 . . . yd]

Pr[x = 1|y1 . . . yd]
=

d
∏

i=1

Pr[x = 0|yi]

Pr[x = 1|yi]

m = log
Pr[x = 0|y1 . . . yd]

Pr[x = 1|y1 . . . yd]
=

d
∑

i=1

li (13.1)

Therefore, when the messages are in log-likelihood form, the optimal probabilistic processing rule at the variable
nodes is the summation of all incoming messages.

13.2.2. Processing at the Check Nodes

Consider Fig.13.3. Letyi denote the noisy observation on theith summand in the parity check equation and define

pi(0) := Pr[xi = 0|yi], pi(1) := Pr[xi = 1|yi] i = 1 . . . d

Let S denote the event that the parity-check equation is satisfied. Then the outgoing message will bem = log p(0)
p(1)

where

p(k) := Pr[xd+1 = k|S, y1 . . . yd] = Pr[x1 + . . . + xd = k|y1 . . . yd] k = 0, 1

Sincep is a density on themod2 sum of independent random variables, it is the cyclic convolution ofpi’s. Therefore
lettingF denote the Fourier transform, we have

F{p} =
d

∏

i=1

F{pi}

4 Modern Coding Theory, Spring 2006

Fourier transform of a functionf overZ2 is also defined overZ2 and is given by

F{f}(0) = f(0) + f(1)

F{f}(1) = f(0) − f(1)

Since we have probability distributions as our functions,

F{p}(0) = 1

F{p}(1) = p(0) − p(1) =
d

∏

i=1

(pi(0) − pi(1)) (13.2)

Recall that the received messages are in the log-likelihoodform li = log pi(0)
pi(1)

. By direct computation we get

pi(0) − pi(1) =
eli − 1

eli + 1
= tanh

li
2

(13.3)

and

p(0) − p(1) =
em − 1

em + 1
= tanh

m

2
(13.4)

Substituting 13.3 and 13.4 in 13.2 we have

tanh
m

2
=

d
∏

i=1

tanh
li
2

m = log
1 +

∏d

i=1 tanh li
2

1 −
∏d

i=1 tanh li
2

. (13.5)

13.3. Binary Erasure Channel

Probabilistic decoding problem reduces to a combinatorialproblem in the BEC case. This is due to the fact that there
is no uncertainty in a bit’s value unless the received value is an erasure.

13.3.1. Variable node processing rule

Recall that the variable node processing rule is simply summation of the incoming log-likelihood ratios. Without loss
of generality, it can be assumed that the channel outputs log-likelihood ratios instead of bit values. Then channel
output alphabetM and message alphabetO are equal:M =O={+∞, 0,−∞}, where the values correspond to0, e
and1 respectively in the usual BEC case. At timet = 0, the only input that a variable node will receive will be
the outputl1 ∈ O of the channel, which will be passed to the neighboring checknodes. Notice that variable node
processing rule

m =
∑

li

reduces to

m =

{

0 if li = 0 ∀i
β if ∃β ∈ {l1 . . . ld} β 6= 0

One might ask what happens to the sum when we have both+∞ and−∞ in the incoming message set. This in
fact is an impossible situation since the messages passed under belief propagation are consistent (a+∞ implies
Pr[x = 1] = 1 and a−∞ impliesPr[x = 0] = 1).

Observe that the above processing rule would be valid for anymessage alphabetM ={−β, 0, β}. Therefore taking
the channel input alphabet to be{1,−1}, the channel output alphabet to beO={1, 0 -1} with the correspondence
1 ↔ 0, −1 ↔ 1, 0 ↔ e, and the message alphabet to beM =O, the variable node processing rule is equivalent to
sending the bit value if any of the received messages is non-zero, and sending a zero otherwise.

Lecture 13: Message Passing Algorithms 5

Figure 13.4: Iterative decoding for BEC. In each iteration, first find a check node of degree 1 (left), then remove all
the edges emanating from the neighboring variable node (right)

13.3.2. Check node processing rule

Recall that at the check nodes the output message was determined according tom = log
1+

Q

tanh
li

2

1−
Q

tanh
li

2

. Note that

tanh(+∞) = 1

tanh(0) = 0

tanh(−∞) = −1

Therefore whenM = {+∞, 0,−∞}, the above processing rule is equivalent to

m = log
1 +

∏d

i=1 sgn(li)

1 −
∏d

i=1 sgn(li)

which reduces to

m =







0 if ∃i s.t. li = 0
+∞ li 6= 0 ∀i and there is an even number of +∞’s
−∞ li 6= 0 ∀i and there is an odd number of +∞’s

Note that if we again take the channel input alphabetI ={1,−1}, the parity-check constraint becomes,
∏

i mi = 1.
Therefore takingM =O={1, 0,−1}, the above processing rule is equivalent to

m =
∏

i

mi

With the above two reductions, switching back to the representationI = {0, 1}, belief propagation algorithm on the
BEC is equivalent to the following decoding algorithm:
Step 1. Pass all the received (non-erasure) bit values from the variable nodes to the check nodes along the edges.
Step 2. At the check node side, store the XOR of the incoming bits and delete the edges along which bit values came.
Step 3. Find a check node of residual degree 1, and send its (stored) value to the variable nodev it is connected to.
Step 4. Delete all edges emanating fromv.
Step 5. Repeat Steps 3 and 4.

Fig.13.4 shows one iteration of the algorithm defined above.Clearly, we need a non-zero fraction of the check
nodes to have degree 1 in each iteration of decoding in order to recover all variable nodes.

