Introduction to Coding Theory - Spring 2010 Solutions 10

Solutions 10

Exercise 10.1.

We must find polynomials g(z) and h(x) such that g(z;) — y;h(x;) = 0 for all i, and
furthermore, deg(g) < 4 and deg(h) < 1. h(x) will be the error locator polynomial. We thus
want to find a solution to the system

90 0
g1 0
g2 0
A g3 | | 0|’
ho 0
hi 0
where
1 1 12 18 =5 —5-1
1 2 22 22 —2 —2.2
A=]1 3 32 3 -6 —6-3
1 4 42 43 -3 -3.4
1 5 5 5 -5 —5-5

Performing Gaussian elimination over 7 on the matrix A, we get the equivalent system

11112 2 g0 8
013031 g1 0
002506 92:0
000100 zf” 0
0
0000 2 3 n 0

Setting h; = 1, we can solve for hg and get hg = 2. Thus h(z) = = — 2, so that we know
that the error occured at the position corresponding to the evaluation point 2. We discard
the corresponding position and perform erasure decoding on the rest of the vector y. Note
that a generator matrix for our code is

1 1 1 1 1 1 1 1 11
G_12345 1 23 45

Tl 1 22 32 42 52 1 42 2 4|
1 23 33 43 52 1 16 1 6

so that the codeword (5, z, 6, 3, 5) that we are looking for is of the form
a(1,1,1,1,1) + b(1,2,3,4,5) + ¢(1,4,2,2,4) + d(1,1,6,1,6).

Solving the system
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we get (a,b,c,d) = (4,1,2,5) and hence the missing coordinate is x = a +2b+4c+d = 5, so
that the sent codeword is (5, 5, 6, 3, 5).

Exercise 10.2.

1. Any (n, M,d) code is <d;1, 1) -list decodable and vice-versa. This follows immedi-

ately from the definition of minimum distance.

2. First note that
n(t—(k—1))
< = 77
T t2—(k—1)n

Using the fact that k — 1 = n — d and letting e = n — ¢, we see that there are at

most n? codewords in a ball of radius e around any vector y in the space, provided
(n —e)? > n(n — d). But this is verified for e < n — \/n(n — d).

This result is particularly useful when the minimum distance is relatively large (k not
too large) with respect to n: it says that we can list-decode for a large number of errors
and with a relatively short (polynomial in n) list of codewords.

<n? ift? > (k—1)n.

Note also that we have stated this bound for RS codes, but it is actually valid for any
code, not necessarily linear (using d instead of £ — 1), so that the list-decoding bound
shown here applies to any code.

Exercise 10.3.

1. By assumption, we have that Q(z, f(z)) = 0. Thus we must have Q(0, f(0)) = 0. But
this is equal to Ay(3) by the expansion of Q(z,y) as a polynomial in F,[y][z].

2. First, we write

(y—fo—frix—- = friad" (W) + r1(y)z+---) = Ao(y) + Ai(y)z + -,

and then equate the coefficient of 2° on both sides, to obtain

(y — fo)vo(y) = Ao(y) = vo(y) = Ao(y)/(y — B).

Similarly, equating the coefficient of 2 on both sides yields

Ar(y) = (y = B)a(y) — fivbo(y)-
Instantiating the latter identity with y = 3 gives f1 = —A1(5)/v0(5), as desired.

3. Similar to above, we equate the coefficient of x' on both sides to obtain

Vi(y)(y — B) = Ai(y) + fibo(y) + - + frdima1(y),

which gives the identity

i) = Ai(y) + fﬂﬂo(@;)irb‘ -+ f1¢i—1(y)’
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and then instantiate with y = (3 to obtain

CAB) + fiviea(B) + -+ ficin(B)

fi = .
Yo(B)
Note that these expressions are well-defined. Since we have asummed that 3 is a sim-
_ Ao(y)

ple root of Ay(y), it cannot be a root of ¢o(y) = 7 =7, so that we can divide by o(B) in
the expression for f;. And in the expression for 1;(y), note that y — 3 does divide the
numerator. Indeed,

Ai(B) + frvic1(B) + - + fic1v1(B)
Ai(B) + fivii(B) + - + fic1v1(B)

= Ai(B) — i +-+ fin
(B) vo(B) Yi1(B) Ji-1¥1(B)
=0.
Then the algorithm would find coefficients fy, ..., fx—1 one by one using this recursion.

4. For the given Q(z,y), we have

Aly) = Y+ +y0+y
Al(y) = v +y

A(y) = vV +yP+1
As(y) = v+ +y+1
As(y) = o

As(y) = o

As(y) = 0

A7(y) = 1

We note that Ay(y) has two simple roots: 5 = 0 and 3 = 1. First we set 3 = 0 and
follows the recursions, which give

fo = =0
voly) = v +yP+yP+1
Yo(B) = 1
i = —A(B)=0
vi(y) = (Aily)+ Avo®)/(y—8) =W +y)/y=y+1
fo = —(A2B8) + fia(B)) =1
a(y) = (Aa(y)+ fotoly) + i)/ (y—B) = (P + > + 1+ v + > +9° + 1) Jy = ¢°
f3 = —(A3(8) + frv2(B) + f21(B)) = 0,
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and we obtain a factor y + 2. Then we set 8 = 1 and perform a simiar computation:

fo = B=1
voy) = A/ (-8 =0"+y'+P+y)/ -1 =y +y*+1
Yo(B) = 1

fi = —A(B) =
Pily) = (A (y)+f1wo( N/ (y — ) (v +y)/(y—1) =

fa = —(A20B) + fiv1(B)) =

f3 = —(A3(p )+f1¢2(ﬁ)+f21/11( ) =v1(1) =

and we obtain another factor y + 22 + 2% + 1.



