Solutions 11

Exercise 11.1. Let $A = (a_1 | \cdots | a_n)$ be an $m \times n$ matrix of rank r over some field \mathbb{F} . Since A is of rank r, the dimension of its image when A is viewed as a linear map from \mathbb{F}^n to \mathbb{F}^m is r. Let $\{\beta_1, \ldots, \beta_r\}$ be a basis of $\mathrm{Im} A$, for $\beta_i \in \mathbb{F}^m$. Each column a_i of A can be viewed as an element of $\mathrm{Im} A$ and can thus be written as a linear combination of the basis vectors as follows:

$$a_i = \sum_{j=1}^r a_{ji} \beta_j.$$

We can thus write

$$A = (\beta_1 \cdots \beta_r) \cdot \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{r1} & a_{r2} & & a_{rn} \end{pmatrix}.$$

Instead of being represented by mn entries, A can thus be represented by r(m+n) entries, which is a significant gain when r is small enough.

Exercise 11.2.

1. Let $A = \operatorname{diag}(1/x_1, \dots, 1/x_n)$ and let $B := Z_t$ be the $t \times t$ shift operator

$$B_t = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Then

$$AD^{i}V_{n,t} - D^{i}V_{n,t}B = \begin{pmatrix} y_{1}^{i}/x_{1} \\ y_{2}^{i}/x_{2} \\ \vdots \\ y_{n}^{i}/x_{n} \end{pmatrix} \cdot \underbrace{(1,0,\ldots,0)}_{t}.$$

2. We define a displacement operator $\nabla_{A,B}$ with $A=\operatorname{diag}(1/x_1,\ldots,1/x_n)$ as before, and B a block-diagonal matrix with diagonal blocks $B_e,B_{e+(k-1)},\cdots,B_{e+\ell(k-1)}$ and zeroes everywhere else. Then

$$AX - XB = \begin{pmatrix} y_1^{\ell}/x_1 & 0 & \cdots & 0 & y_1^{\ell-1}/x_1 & 0 & \cdots & 0 & \cdots & 1/x_1 & 0 & \cdots & 0 \\ y_2^{\ell}/x_2 & 0 & \cdots & 0 & y_2^{\ell-1}/x_2 & 0 & \cdots & 0 & \cdots & 1/x_2 & 0 & \cdots & 0 \\ \vdots & & & & \vdots & & & & \vdots \\ y_n^{\ell}/x_n & 0 & \cdots & 0 & y_n^{\ell-1}/x_n & 0 & \cdots & 0 & \cdots & 1/x_n & 0 & \cdots & 0 \end{pmatrix}$$

$$= \begin{pmatrix} y_1^{\ell}/x_1 & y_1^{\ell-1}/x_1 & \cdots & 1/x_1 \\ y_2^{\ell}/x_2 & y_2^{\ell-1}/x_2 & \cdots & 1/x_2 \\ \vdots & \vdots & \ddots & \vdots \\ y_n^{\ell}/x_n & y_n^{\ell-1}/x_n & \cdots & 1/x_n \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & & \vdots & & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix}$$

which has rank $\ell + 1$ and is such that we can recover x_1, \dots, x_n and y_1, \dots, y_n , i.e., $\nabla_{A,B}$ is indeed bijective.

Exercise 11.3. Let

$$A = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & & & \\ 1 & 0 & & & \\ & \ddots & \ddots & & \\ & & 1 & 0 & \\ & & & 1 & 0 \end{pmatrix}.$$

Then

$$AT = \begin{pmatrix} a_2 & \cdots & a_{t+1} \\ a_3 & \cdots & a_{t+2} \\ \vdots & & & \\ a_t & \cdots & a_{2t-1} \\ 0 & \cdots & 0 \end{pmatrix} \text{ and } TB = \begin{pmatrix} a_2 & \cdots & a_t & 0 \\ a_3 & \cdots & a_{t+1} & 0 \\ \vdots & & & \\ a_{t+1} & \cdots & a_{2t-1} & 0 \end{pmatrix},$$

so that

$$AT - TB = \begin{pmatrix} 0 & \cdots & 0 & a_{t+1} \\ & & & \vdots \\ 0 & \cdots & 0 & a_{2t-1} \\ a_{t+1} & \cdots & a_{2t-1} & 0 \end{pmatrix},$$

which has rank 2.

Exercise 11.4. Let
$$L = \begin{pmatrix} \ell_1 \\ & \ddots \\ & \ell_n \end{pmatrix}$$
 and $U = \begin{pmatrix} u_1 \\ & \ddots \\ & u_n \end{pmatrix}$. Then
$$LC - CU = \begin{pmatrix} \frac{\ell_1}{x_1 - y_1} & \frac{\ell_1}{x_1 - y_2} & \cdots & \frac{\ell_1}{x_1 - y_n} \\ \frac{\ell_2}{x_2 - y_1} & \frac{\ell_2}{x_2 - y_2} & \cdots & \frac{\ell_2}{x_2 - y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\ell_n}{x_1 - y_1} & \frac{\ell_n}{x_1 - y_2} & \cdots & \frac{\ell_n}{x_1 - y_n} \end{pmatrix} - \begin{pmatrix} \frac{u_1}{x_1 - y_1} & \frac{u_2}{x_1 - y_2} & \cdots & \frac{u_n}{x_1 - y_n} \\ \frac{u_1}{x_2 - y_1} & \frac{u_2}{x_2 - y_2} & \cdots & \frac{u_n}{x_2 - y_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{u_1}{u_1} & \frac{u_2}{u_2} & \cdots & \frac{u_n}{u_n} \end{pmatrix},$$

so that

$$C_{ij} = \frac{\ell_i - u_j}{x_i - y_i}.$$

We see that a choice of $\ell_i = x_i^2$, $u_j = y_j^2$ yields the matrix whose (i, j)-th entry is $x_i + y_j$. But this matrix is of rank 2 and given by

$$\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots \\ x_n & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & \cdots & 1 \\ y_1 & y_2 & \cdots & y_n \end{pmatrix}.$$