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Solutions 12

Exercise 12.1.

1. Suppose that n = 1, so that P(z) is a univariate polynomial of degree d over F,. Then
we know that P has at most d roots in I, therefore for 2; chosen uniformly at random
inF,, we get

Pr[P(z1) = 0] < d/q.

2. Now suppose that for a given n > 2, for any nonzero (n — 1)-variate polynomial

P(zy,--- ,xn—1) of degree d, Pr[P(z1, - ,zp—1) = 0] < d/q when zy,--- , 2,1 are
chosen uniformly in F,. We want to prove that for a nonzero n-variate polynomial
P(zy,--- ,xy,) of degree d, Pr[P(z1,--- ,2,) = 0] < d/q when z4,--- ,z, are chosen
uniformly in F,.
Write
d
P(ﬂfl, al‘n) - Z:Clpt(l?) ’:En)
i=0
- Z.’L’lez(l?, axn)v
=0
where j is the largest index such that P;j(zs, ..., xy) is not the zero polynomial. Note

that degP; + j < d. We have that

Pr [P(x1, - ,z,)=0] = Pr [Pz, - ,2n) = 0A Pj(x2,...,2,) =0
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But
degP;
Pr [Pz, ,2n) = O0A Pj(2a,...,2,) =0] < Pr [Pi(as,...,2n) =0] < —01
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where we have used the induction hypothesis. Also,

Pr [P(z1, - ,2n) =0 A Pj(xg,...,x,) #0] <

L1,y
Pr[P(z1, - ,2y) = 0|z2,..., 2, are s.t. Pj(z2,...,2y,) # 0].
1
But when we condition on the event that P;(z2, ..., z,) # 0, we have that P(x1,--- ,2,) =
g:o a:ZiPi(xg, ...,Zy) is a nonzero degree-j univariate polynonomial in z;. We can

now apply the result from part 1 and deduce that the probability that such a polyno-
mial evaluates to 0 is upper-bounded by j/q.

We thus have that

degP; + j <

Pr[P(z1, - ,2,) = 0] < d/q,

which completes the induction step.
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3. By definition,

# roots (ay,...,ay) of P
Pr[P(zy, -+ an) = 0] = qn - :
Putting this together with the result of part 2, we conclude that the number of roots
(a1,...,an) of P over F is less than or equal to dg" .

Note that we could consider the alternative problem of bounding the number of roots
(a1,...,a,) of P where all a; belong to a subset S C F,. Then we could follow a similar
method to upper bound the number of such roots by d|S|" L.

Exercise 12.2.

1. Write f(x,y) as Y, fi(y)z'. Forany 3 € I, f(z,8) = Y, fi(3)2" is a univariate polyno-
mial in x of degree < k, and it has at least k roots (x instantiated with all elements of I).
Hence it is identically zero, and f;(3) = 0Vi. Now for each such index i, we thus have
that f;(3) = 0 for all elements 3 of I, i.e., f;(y) has at least k roots. But it is a univariate
polynomial in y of degree < y, so that f;(y) must be identically zero. We thus have that

flx,y) =2, fi(y)z® is identically 0.
2. The code C is the image of the map

2
¢:Fq[$7y}<k’,<k - FZ

f o~ (f(a,b):(a,b) € F2)

We would like to show that ¢ is injective. Take an element f of ker¢. f is such that
it evaluates to 0 on all (a,b) € F2. Apply part 1 with I = F, to get that f is the zero
polynomial. Thus ¢ is injective and dimC = dim(Im¢) = k2.

0—16-1 t—
3. Finding such a nonzero polynomial Q(z,y, z) = Z Z
0 j=0 k=0
ing its ¢t coefficients. The conditions Q(a, 3,ya3) = 0 for all o, 3 € F, correspond to
¢* linear equations that the {g;;,} must satisfy. As long as ¢t > ¢, this linear system
has a nontrivial solution.

1
Qijkl'iyj z* amounts to find-

]

Exercise 12.3.

1. We want to find the number of points (z,y, z) € ng such that

P — yi+y
y(H-l = 29+ 1.

Recall that the map z +— 7 + z is the trace of F 2 over F, and is a surjective homomor-
phism, and that the map = — x4t is the norm, which means that it maps F» to F,.
Now 2z can take ¢? possible values, for each of which 29t is in F,. The trace map being
a surjective homomorphism, we know that it maps to each value in F, ¢ times, so that
there are ¢ corresponding values of y such that y9 4+ y = z9*1. But for each such value
of y, there are again ¢ values of z such that 27 + z maps to y?** € F,. In total, there are
¢* common zeros of f and g.
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2. Consider f(z,y) = x%42—y9*!. The space of polynomials of degree < minF [z, y]/(f)
can be represented by

Lo = Fylz]<m ® yFglz]<m—1 @ - - © y7Fg[r]<m—q
and is of dimension

q(q—1)
2

dimlc,, = (m—1)(¢+1) — +1=5m-10

for ¢ := 4. Now consider g(z,y, z) = y? +y — 297L. The space of polynomials of degree
<n,inFpelx,y,2]/(f, g) can be represented by

F<n @ Zr<n_]_ @ e EB Zq]._‘<n_q,

for n > g. This space has dimension

n
> (5m —10) = 25n — 100.

m=n—q

3. We consider the curve given by f(z,y, z) = 0,g(z,y, z) = 0 and define the correspond-
ing AG code C' = Im¢, where

¢$:Tep @2l @ ® 2Ty — FL
h — (h(a,b,¢): f(a,b,c) =g(a,b,c) =0).

By Bézout’s theorem, we know that the number of common zeros of any h and the
curve is upper bounded by deg(h)deg(f)deg(g) < n(q+1)? = 25n (note that h belongs
to such a space that it cannot be expressed as h = h1 f + hag for some polynomials 5
and hg, so that Bézout’s theorem can be applied).

We would like to make sure that ¢ is injective. For that, it is enough to impose the
condition n(g + 1)? < ¢%,i.e., n < 10, which ensures that for any h in the domain, ¢(h)
is not all zeros. We then get the following parameters for the code:

dimC = 25n — 100
distC > ¢* —n(qg+1)* =256 — 25n.



