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Solutions 12

Exercise 12.1.

1. Suppose that n = 1, so that P (x1) is a univariate polynomial of degree d over Fq. Then
we know that P has at most d roots in Fq, therefore for x1 chosen uniformly at random
in Fq, we get

Pr[P (x1) = 0] ≤ d/q.

2. Now suppose that for a given n ≥ 2, for any nonzero (n − 1)-variate polynomial
P (x1, · · · , xn−1) of degree d, Pr[P (x1, · · · , xn−1) = 0] ≤ d/q when x1, · · · , xn−1 are
chosen uniformly in Fq. We want to prove that for a nonzero n-variate polynomial
P (x1, · · · , xn) of degree d, Pr[P (x1, · · · , xn) = 0] ≤ d/q when x1, · · · , xn are chosen
uniformly in Fq.
Write

P (x1, . . . , xn) =
d∑
i=0

xi1Pi(x2, . . . , xn)

=
j∑
i=0

xi1Pi(x2, . . . , xn),

where j is the largest index such that Pj(x2, . . . , xn) is not the zero polynomial. Note
that degPj + j ≤ d. We have that

Pr
x1,...,xn

[P (x1, · · · , xn) = 0] = Pr
x1,...,xn

[P (x1, · · · , xn) = 0 ∧ Pj(x2, . . . , xn) = 0]

+ Pr
x1,...,xn

[P (x1, · · · , xn) = 0 ∧ Pj(x2, . . . , xn) 6= 0].

But

Pr
x1,...,xn

[P (x1, · · · , xn) = 0 ∧ Pj(x2, . . . , xn) = 0] ≤ Pr
x2,...,xn

[Pj(x2, . . . , xn) = 0] ≤ degPj
q

,

where we have used the induction hypothesis. Also,

Pr
x1,...,xn

[P (x1, · · · , xn) = 0 ∧ Pj(x2, . . . , xn) 6= 0] ≤

Pr
x1

[P (x1, · · · , xn) = 0|x2, . . . , xn are s.t. Pj(x2, . . . , xn) 6= 0].

But when we condition on the event thatPj(x2, . . . , xn) 6= 0, we have thatP (x1, · · · , xn) =∑j
i=0 x

i
1Pi(x2, . . . , xn) is a nonzero degree-j univariate polynonomial in x1. We can

now apply the result from part 1 and deduce that the probability that such a polyno-
mial evaluates to 0 is upper-bounded by j/q.
We thus have that

Pr[P (x1, · · · , xn) = 0] ≤ degPj + j

q
≤ d/q,

which completes the induction step.
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3. By definition,

Pr[P (x1, · · · , xn) = 0] =
] roots (a1, . . . , an) of P

qn
.

Putting this together with the result of part 2, we conclude that the number of roots
(a1, . . . , an) of P over Fq is less than or equal to dqn−1.

Note that we could consider the alternative problem of bounding the number of roots
(a1, . . . , an) of P where all ai belong to a subset S ⊆ Fq. Then we could follow a similar
method to upper bound the number of such roots by d|S|n−1.

Exercise 12.2.

1. Write f(x, y) as
∑

i fi(y)xi. For any β ∈ I , f(x, β) =
∑

i fi(β)xi is a univariate polyno-
mial in x of degree< k, and it has at least k roots (x instantiated with all elements of I).
Hence it is identically zero, and fi(β) = 0 ∀i. Now for each such index i, we thus have
that fi(β) = 0 for all elements β of I , i.e., fi(y) has at least k roots. But it is a univariate
polynomial in y of degree< y, so that fi(y) must be identically zero. We thus have that
f(x, y) =

∑
i fi(y)xi is identically 0.

2. The code C is the image of the map

φ : Fq[x, y]<k,<k → Fq
2

q

f 7→
(
f(a, b) : (a, b) ∈ F2

q

)
We would like to show that φ is injective. Take an element f of kerφ. f is such that
it evaluates to 0 on all (a, b) ∈ F2

q . Apply part 1 with I = Fq to get that f is the zero
polynomial. Thus φ is injective and dimC = dim(Imφ) = k2.

3. Finding such a nonzero polynomialQ(x, y, z) =
`−1∑
i=0

`−1∑
j=0

t−1∑
k=0

qijkx
iyjzk amounts to find-

ing its `2t coefficients. The conditions Q(α, β, yα,β) = 0 for all α, β ∈ Fq correspond to
q2 linear equations that the {qijk} must satisfy. As long as `2t > q2, this linear system
has a nontrivial solution.

Exercise 12.3.

1. We want to find the number of points (x, y, z) ∈ F3
q2 such that

zq+1 = yq + y

yq+1 = xq + x.

Recall that the map x 7→ xq + x is the trace of Fq2 over Fq and is a surjective homomor-
phism, and that the map x 7→ xq+1 is the norm, which means that it maps Fq2 to Fq.
Now z can take q2 possible values, for each of which zq+1 is in Fq. The trace map being
a surjective homomorphism, we know that it maps to each value in Fq q times, so that
there are q corresponding values of y such that yq + y = zq+1. But for each such value
of y, there are again q values of x such that xq + x maps to yq+1 ∈ Fq. In total, there are
q4 common zeros of f and g.
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2. Consider f(x, y) = xq+x−yq+1. The space of polynomials of degree< m in Fq2 [x, y]/(f)
can be represented by

Γ<m = Fq[x]<m ⊕ yFq[x]<m−1 ⊕ · · · ⊕ yqFq[x]<m−q

and is of dimension

dimΓ<m = (m− 1)(q + 1)− q(q − 1)
2

+ 1 = 5m− 10

for q := 4. Now consider g(x, y, z) = yq + y− zq+1. The space of polynomials of degree
< n, in Fq2 [x, y, z]/(f, g) can be represented by

Γ<n ⊕ zΓ<n−1 ⊕ · · · ⊕ zqΓ<n−q,

for n > q. This space has dimension

n∑
m=n−q

(5m− 10) = 25n− 100.

3. We consider the curve given by f(x, y, z) = 0, g(x, y, z) = 0 and define the correspond-
ing AG code C = Imφ, where

φ : Γ<n ⊕ zΓ<n−1 ⊕ · · · ⊕ zqΓ<n−q → Fq
4

q

h 7→ (h(a, b, c) : f(a, b, c) = g(a, b, c) = 0) .

By Bézout’s theorem, we know that the number of common zeros of any h and the
curve is upper bounded by deg(h)deg(f)deg(g) < n(q+1)2 = 25n (note that h belongs
to such a space that it cannot be expressed as h = h1f + h2g for some polynomials h1

and h2, so that Bézout’s theorem can be applied).
We would like to make sure that φ is injective. For that, it is enough to impose the
condition n(q + 1)2 < q4, i.e., n ≤ 10, which ensures that for any h in the domain, φ(h)
is not all zeros. We then get the following parameters for the code:

dimC = 25n− 100
distC ≥ q4 − n(q + 1)2 = 256− 25n.
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