
Introduction to Coding Theory - Spring 2010 Solutions 4

Solutions 4

Exercise 4.1.

1. We first show that any pair of columns of H is linearly independent. Note that a linear
dependency ac1 + bc2 = 0 for any two columns c1 and c2 would imply a = b, since the
columns are all of the form (1, ∗, ∗)>. It is thus enough to check that the sum of any
two columns cannot be zero. This is clearly the case if one of the two columns is either
the first column of the second column. If the two columns are of the form (1, α, ∗)>
and (1, α2, ∗)>, then their independence is clear too, since projection onto the first two
coordinates gives two independent vectors. Otherwise, projection onto the last two
coordinates gives two independent vectors.

On the other hand,
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
is a linear dependency among three columns. In other words, the weight-3 word
(00αα21000) belongs to the code.

2. The weight distribution of this code involves only the nonnegative parameters A0, A3,
A4, A5, A6, A7 and A8. The objective function we want to maximize is

A0 +A3 +A4 +A5 +A6 +A7 +A8.

Recall the definition of the Krawtchouk polynomials

Kk(x) :=
k∑

j=0

(−1)j

(
x

j

)(
n− x
k − j

)
(q − 1)k−j .

Thus

K0(x) = 1
K1(x) = 3(8− x)− x = −4x+ 24

K2(x) = 9
(

8− x
2

)
− 3x(8− x) +

(
x

2

)
= 8x2 − 92x+ 252,

and the corresponding linear constraints are

A0 +A3 +A4 +A5 +A6 +A7 +A8 ≥ 0
24A0 + 12A3 + 8A4 + 4A5 − 4A7 − 8A8 ≥ 0

252A0 + 48A3 + 12A4 − 8A5 − 12A6 + 28A8 ≥ 0.

The full linear program is

maxA0 +A3 +A4 +A5 +A6 +A7 +A8 subject to
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A0 +A3 +A4 +A5 +A6 +A7 +A8 ≥ 0
24A0 + 12A3 + 8A4 + 4A5 − 4A7 − 8A8 ≥ 0

252A0 + 48A3 + 12A4 − 8A5 − 12A6 + 28A8 ≥ 0
1512A0 + 44A3 − 40A4 − 28A5 + 16A6 + 28A7 − 56A8 ≥ 0

5670A0 − 150A3 − 74A4 + 50A5 + 30A6 − 70A7 + 70A8 ≥ 0
13608A0 − 252A3 + 120A4 + 44A5 − 96A6 + 84A7 − 56A8 ≥ 0

20412A0 + 216A3 + 108A4 − 144A5 + 100A6 − 56A7 + 28A8 ≥ 0
17496A0 + 324A3 − 216A4 + 108A5 − 48A6 + 20A7 − 8A8 ≥ 0

6561A0 − 243A3 + 81A4 − 27A5 + 9A6 − 3A7 +A8 ≥ 0
A0, A3, A4, A5, A6, A7, A8 ≥ 0

The linear program gives a solution

A0 = 1, A3 = 72, A4 = 210, A5 = 432, A6 = 792, A7 =
4152

7
, A8 =

1683
7

.

The sum of these values is 16384/7, so that A4(8, 3) ≤ blog4(16384/7)c = 5, which shows the
optimality of the code.

Exercise 4.2. The solution is similar to the proof of Gilbert-Varshamov bound for linear
codes.

1. If the first k entries in y = (y1, . . . , yn) are zero, then the linear constraint 〈Hi | y〉 = 0,
where Hi is the ith row of H , simplifies to yk+i = 0. As y is nonzero, this cannot hap-
pen for all i’s, and thus, the probability of y being in the right kernel of H is zero.

Now suppose y1, . . . , yk are not all zero and note that the linear map

φy : Fk
q → Fq

(a1, . . . , ak) 7→
∑

aiyi

being nontrivial, the preimage set of each α ∈ Fq has the same size. Thus as the ith
row Ai of A is picked uniformly in Fk

q , 〈Ai | (y1, . . . , yk)〉 will be uniformly distributed
over Fq, so that 〈Ai | (y1, . . . , yk)〉 = yk+i with probability 1/q. ButHy> = 0 means that
〈Ai | (y1, . . . , yk)〉 = yk+i for each i. This happens with probability (1/q)n−k = qk−n.

2. We want to upper bound the probability that the code defined by the parity check
matrix H contains a word of weight d− 1 or less. For each fixed word y of weight d− 1
or less, the probability that y is in the code (i.e., bad event) is given by the previous part.
Now we use a union bound on all choices of y that have 1 as their first nonzero entry
(this prevents overcounting since y belongs to the code if and only if αy belongs to the
code for any nonzero scalar α); the number of such y is the volume of Hamming ball of
radius d−1, that we denote by Vq(n, d−1) =

∑d−1
i=1

(
n
i

)
, divided by q−1. Among these,

Vq(n − k, d − 1)/(q − 1) have zeros as their first k entries, and for these the bad event
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probability is zero. Thus, the probability that we wish to compute is upper bounded
by

qk−n · Vq(n, d− 1)− Vq(n− k, d− 1)
q − 1

,

which is exactly ρ.

3. This is immediate from the previous part by observing that, for each i, H contains i
dependent columns iff the linear code CH for which it is a parity check matrix contains
a codeword of weight i. Therefore

Pr[CH has minimum distance ≤ d− 1] ≤ Pr[H has d− 1 dependent columns] ≤ ρ.

Exercise 4.3.

1. Note that the support of y must be a subset of the support of c, otherwise dist(c, y) > t.
The number of such words y is thus

(
2t+1
t+1

)
=
(
2t+1

t

)
.

2. For every c ∈ C, denote by Yc the set

Yc := {y ∈ Fn
q : wgt(y) = t+ 1,dist(y, c) = t}.

Note that for each c 6= c′ ∈ C, we must have Yc ∩ Yc′ = ∅, as otherwise dist(c, c′) < d.
Thus the number of y ∈ Fn

q of weight t+1 that are at distance t from some codeword of
C is exactly M

(
2t+1

t

)
. But on the other hand the number of such words cannot exceed

the total number of words of weight 2t+ 1 in Fn
q , which is

(
n

t+1

)
(q − 1)t+1. The bound

follows.

Exercise 4.4. A burst of length ` is the event of having errors in a codeword such that the
locations i and j of the first (leftmost) and last (rightmost) errors, respectively, satisfy j− i =
`− 1. Let C be a linear [n, k]-code over Fq that is able to correct every burst of length t or less.

1. Consider a codeword c = (c1, . . . , cn) that contradicts this assumption. Then w =
(c1, . . . , ci+t−1, 0, 0, . . . , 0) = (0, . . . , ci, . . . , ci+t−1, 0, 0, . . . , 0) can be either the zero code-
word with a burst of length t starting at position i, or c with a burst of length t starting
at position i+ t, and is thus not uniquely decodable, a contradiction.

2. The proof is similar to that of the Singleton bound. Since the number of codewords
is qk > qk−1, there must be at least two codewords that agree on their first k − 1 co-
ordinates, and thus, there is a nonzero codeword that has all zeros on its first k − 1
coordinates, so that the position i of its first nonzero entry is such that i ≥ k. On the
other hand, the position j of its last nonzero entry satisfies j ≤ n. Thus j − i ≤ n − k.
By the previous part, we have j − i ≥ 2t, so that 2t ≤ n− k.

3. The proof is similar to the classical sphere-packing bound except that the shape of the
“balls” are now different. For the sphere-packing bound we had to count the number
of points that are at distance t from a given point, or the “volume” of the Hamming
ball of radius t around each codeword. Here instead we only need to count the number
of points within such a ball that are different from the word at the center (denoted by
w) by a burst of size at most t. Denote this quantity by V . We have to distinguish the
following cases and add up the numbers:
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• The word w at the center,

• Words that are different from w in only one position. The number of such words
is n(q − 1),

• Words that are different from w by a burst of size i, 2 ≤ i ≤ t. The number of such
words is (n− i+ 1)(q − 1)2qi−2.

Altogether, we will have

V = 1 + n(q − 1) + (q − 1)2
t−2∑
i=0

(n− i− 1)qi,

and similar to the sphere-packing bound, the “spheres” must be disjoint so that qkV ≤
qn. The bound follows.

Exercise 4.5.

1. Let C be an (n,M, 2r − 1)-code. By adding an overall parity check, we get an (n +
1,M, 2r)-code C′ (the fact that the minimum distance of C′ is 2r follows from the fact
that in C, there exist two codewords at distance 2r − 1; the corresponding codewords
in the extended code are at distance 2r. If there were two codewords in C′ at distance
2r − 1, they must differ in the parity check coordinate; but then there would exist two
codewords in C at distance 2r − 2). Thus

A(n, 2r − 1) ≤ A(n+ 1, 2r).

Conversely, given an (n + 1,M, 2r)-code, deleting one coordinate gives an (n,M, d ≥
2r − 1)-code, thus

A(n, 2r − 1) ≥ A(n+ 1, 2r).

2. Given an (n,M, d)-code, divide the codewords into two classes, those beginning with
0 and those beginning with 1. One class must contain at least half of the codewords;
deleting the first coordinate gives a code of length n−1 and minimum distance d. Thus

A(n− 1, d) ≥ 1
2
A(n, d).
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