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Solutions 5

Exercise 5.1.

1. First, note that G has rank k, because of the triangular minor it contains. Moreover, the
rows of G, when interpreted as polynomials, represent g(z), xg(z), . .., 2*~1g(x) which
form a basis for the ideal in F3[x]/(z" — 1) generated by g(x), i.e., the code C.

n—1

2. For any codeword c(z) = Y ¢;z¢, we can write c(z) = f(z)g(z) for some polyno-
mial f(z) of degree less than n — k. Then

c(x)h(z) = f(z)g(z)h(x) =0 (mod z" —1).

The coefficient of z; in this product is

n—1
> cihji=0,j=0,...,n—1, 1)
=0

where the subscripts are taken modulo n. This gives us n check equations satisfied by
the codewords of C. Let

hy hnq1 - ho O 0 ... 0
0 hr hg -+ ho 0 e 0
H := )
0o 0 0 - hy hpq --- ho

Clearly, from (1), if ¢ € C then Hc' = 0. Conversely, note that H has rank n — k because
of the triangular minor it contains, so that the codition A ¢! = 0is a sufficient condition
for c to be in C. Thus H is a parity check matrix for C.

3. From g(z)h(x) = 27 — 1, we get that h(z) = 2* + 22 + 2 + 1, and thus by the result in
the preceding section, we will have

1101000
G:0110100
0011010}
0001101
1011100
H=10 1 1110

0010111

This code is equivalent to a [7, 4, 3] Hamming code (i.e., it is the Hamming code up to
a permutation of the codeword coordinates).
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Exercise 5.2.

1. As n is relatively prime to the field size, " — 1 has no duplicate factors and thus
ged(g(x), h(x)) = 1. Now we can apply Bezout’s identity and conclude that there exist
a(x) and b(x) such that a(x)g(z) + b(x)h(x) = ged(g(z), h(x)) = 1.

2. We have that ¢(x) := a(x)g(z) = 1 — b(z)h(z). Thus, for every codeword f(z), we will
have

c(x)f(x) = f(z) = b(x) f(z)h(z) = f(z).

In particular, letting f(z) = c(x), we get that ¢(z)? = ¢(x) mod 2™ — 1. Also, since
we know that every codeword w(x) of C can be written as a multiple of ¢(z), namely,
w(x)c(z), it follows that ¢(z) generates C.

For the uniqueness, assume that there is a codeword ¢/(z) such that for all codewords
f(z)of C, f(z)d(xz) = f(x). Now let f(z) = c(z); thus, ¢(z)d(x) = c¢(z). Similarly, ¢
having the same property implies that ¢/(z)c(x) = ¢/(z), which gives c(x) = ().

Exercise 5.3.

1. If ¢ € C; N Cy and ¢ is any cyclic shift of ¢, we must have that ¢ € C; thus ¢ € C; and
similarly, ¢ € Cy, which means ¢ € C; N C; and that C; N Cy is cyclic. For the generator
polynomial, let g(x) = LCM(g1(x), g2(x)); the least common multiple of g;(x) and
g2(x). Every codeword in the intersection is divisible by both ¢;(z) and g2(z), and
thus, by g(x). Conversely, every multiple of g(x) is both a multiple of g;(x) and gz(z)
and must belongs to both codes. This means that C; N Cy is generated by g(x).

2. Letc := ¢1 +c2 € C; + Co, where ¢; € C; and ¢2 € Cy, and consider a cyclic shift
of ¢, denoted by ¢/, and corresponding cyclic shifts of ¢; and ¢, denoted by ¢} and ¢,
respectively. We must have that ¢ = ¢} + ¢}, and ¢] (resp., ¢5) must belong to C; (resp.,
C2) by the properties of C; and C,. This means that ¢ € C; + C3 and thus C; + C3 is
cyclic. Now consider the polynomial g(z) = ged(g1(z), g2(x)). First we observe that
every multiple of g (z) or g2(z) is a multiple of g(z) as well, which means that the code
generated by g(z) contains both C; and C; and hence C; +C,. Now, by Bezout’s identity,

g(z) = a(x)g1(z) + b(z)g2(x) mod z" — 1

for some a(x),b(x), so that every multiple of g(x) (e.g., g(z)u(x)) can be written as the
summation a(z)u(z)gi(x) + b(x)u(x)g2(x) which is a multiple of g; () plus a multiple
of ga(z). Thus the code generated by g(z) is contained in C; 4+ C2. We conclude that
C1 + Cy is the cyclic code generated by g(x).

Exercise 5.4.

1. Suppose that ) is a nonzero linear form on F%. Its image is nontrivial, so that its kernel
has dimension k — 1; this means that A vanishes on exactly half the points of F5. Thus
the solution spaces of A(z) = 0 and A(z) = 1 have equal size.
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2. By the definition of the e-biased set, in each codeword of the evaluation code the num-
ber of zeros and ones differ by at most €| S|. As the length of the code of | S|, each code-
word will have weight (thus, the code will have minimum distance) at least (1—¢)[S|/2.
In particular, the left kernel of a generator matrix of the code whose columns form the
set S must be trivial, which means that the dimension of the code is k.

3. As the all-one word is a codeword and the code is linear, the weight distribution of
the code is symmetric; i.e., there is a codeword of weight 7 in the code iff there is one
of weight n — i. Now let G’ be the generator matrix G with its first row removed
and S be the set of its n columns. Thus, G’ is a generator matrix of a subcode of C
that does not contain the all-one word. We know that for each nonzero x € Fg_l, the
weight of y := zG’ is in the range [d,n — d]. Let ng and n; be the number of zeros
and ones in y. Thus we know that ng + n; = n and ng,ny € [d,n — d], which means
[ng — ni| < n—2d = (1 —2d/n)|S|. Note that the choices of = are in one-to-one
correspondence with nonzero elements of (F’g_l)* and the outcomes y are in one-to-
one correspondence with evaluation table of nonzero linear forms over the set S. This
means that the set S is e-biased, for e = 1 — 2d/n.



