Solutions 5

Exercise 5.1.

- 1. First, note that G has rank k , because of the triangular minor it contains. Moreover, the rows of G , when interpreted as polynomials, represent $g(x), xg(x), \ldots, x^{k-1}g(x)$ which form a basis for the ideal in $\mathbb{F}_2[x]/(x^n-1)$ generated by $g(x)$, i.e., the code \mathcal{C} .
- 2. For any codeword $c(x) = \sum_{i=0}^{n-1} c_i x^i$, we can write $c(x) = f(x)g(x)$ for some polynomial $f(x)$ of degree less than $n - k$. Then

$$
c(x)h(x) = f(x)g(x)h(x) = 0 \pmod{x^n - 1}.
$$

The coefficient of x_j in this product is

$$
\sum_{i=0}^{n-1} c_i h_{j-i} = 0, \ j = 0, \dots, n-1,
$$
 (1)

where the subscripts are taken modulo n . This gives us n check equations satisfied by the codewords of C. Let

$$
H:=\begin{pmatrix} h_k & h_{k-1} & \cdots & h_0 & 0 & 0 & \cdots & 0 \\ 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & h_k & h_{k-1} & \cdots & h_0 \end{pmatrix}
$$

Clearly, from (1), if $c \in \mathcal{C}$ then $Hc^{\top} = 0$. Conversely, note that H has rank $n - k$ because of the triangular minor it contains, so that the codition $He^{T} = 0$ is a sufficient condition for c to be in C . Thus H is a parity check matrix for C .

3. From $g(x)h(x) = x^7 - 1$, we get that $h(x) = x^4 + x^2 + x + 1$, and thus by the result in the preceding section, we will have

$$
G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix},
$$

$$
H = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}.
$$

This code is equivalent to a [7, 4, 3] Hamming code (i.e., it is the Hamming code up to a permutation of the codeword coordinates).

Exercise 5.2.

- 1. As *n* is relatively prime to the field size, $x^n 1$ has no duplicate factors and thus $gcd(q(x), h(x)) = 1$. Now we can apply Bezout's identity and conclude that there exist $a(x)$ and $b(x)$ such that $a(x)g(x) + b(x)h(x) = \gcd(g(x), h(x)) = 1$.
- 2. We have that $c(x) := a(x)g(x) = 1 b(x)h(x)$. Thus, for every codeword $f(x)$, we will have

$$
c(x)f(x) = f(x) - b(x)f(x)h(x) = f(x).
$$

In particular, letting $f(x) = c(x)$, we get that $c(x)^2 = c(x) \mod x^n - 1$. Also, since we know that every codeword $w(x)$ of C can be written as a multiple of $c(x)$, namely, $w(x)c(x)$, it follows that $c(x)$ generates C.

For the uniqueness, assume that there is a codeword $c'(x)$ such that for all codewords $f(x)$ of C, $f(x)c'(x) = f(x)$. Now let $f(x) = c(x)$; thus, $c(x)c'(x) = c(x)$. Similarly, c having the same property implies that $c'(x)c(x) = c'(x)$, which gives $c(x) = c'(x)$.

Exercise 5.3.

- 1. If $c \in C_1 \cap C_2$ and c' is any cyclic shift of c , we must have that $c \in C_1$ thus $c' \in C_1$ and similarly, $c' \in C_2$, which means $c' \in C_1 \cap C_2$ and that $C_1 \cap C_2$ is cyclic. For the generator polynomial, let $g(x) = LCM(g_1(x), g_2(x))$; the least common multiple of $g_1(x)$ and $g_2(x)$. Every codeword in the intersection is divisible by both $g_1(x)$ and $g_2(x)$, and thus, by $g(x)$. Conversely, every multiple of $g(x)$ is both a multiple of $g_1(x)$ and $g_2(x)$ and must belongs to both codes. This means that $C_1 \cap C_2$ is generated by $g(x)$.
- 2. Let $c := c_1 + c_2 \in C_1 + C_2$, where $c_1 \in C_1$ and $c_2 \in C_2$, and consider a cyclic shift of c, denoted by c' , and corresponding cyclic shifts of c_1 and c_2 denoted by c'_1 and c'_2 , respectively. We must have that $c' = c'_1 + c'_2$, and c'_1 (resp., c'_2) must belong to C_1 (resp., C_2) by the properties of C_1 and C_2 . This means that $c' \in C_1 + C_2$ and thus $C_1 + C_2$ is cyclic. Now consider the polynomial $g(x) = \gcd(g_1(x), g_2(x))$. First we observe that every multiple of $g_1(x)$ or $g_2(x)$ is a multiple of $g(x)$ as well, which means that the code generated by $g(x)$ contains both C_1 and C_2 and hence C_1+C_2 . Now, by Bezout's identity,

$$
g(x) = a(x)g_1(x) + b(x)g_2(x) \mod x^n - 1
$$

for some $a(x)$, $b(x)$, so that every multiple of $g(x)$ (e.g., $g(x)u(x)$) can be written as the summation $a(x)u(x)g_1(x) + b(x)u(x)g_2(x)$ which is a multiple of $g_1(x)$ plus a multiple of $g_2(x)$. Thus the code generated by $g(x)$ is contained in $C_1 + C_2$. We conclude that $C_1 + C_2$ is the cyclic code generated by $g(x)$.

Exercise 5.4.

1. Suppose that λ is a nonzero linear form on \mathbb{F}_2^k . Its image is nontrivial, so that its kernel has dimension $k-1$; this means that λ vanishes on exactly half the points of \mathbb{F}_2^k . Thus the solution spaces of $\lambda(x) = 0$ and $\lambda(x) = 1$ have equal size.

- 2. By the definition of the ϵ -biased set, in each codeword of the evaluation code the number of zeros and ones differ by at most $\epsilon |S|$. As the length of the code of $|S|$, each codeword will have weight (thus, the code will have minimum distance) at least $(1-\epsilon)|S|/2$. In particular, the left kernel of a generator matrix of the code whose columns form the set S must be trivial, which means that the dimension of the code is k .
- 3. As the all-one word is a codeword and the code is linear, the weight distribution of the code is symmetric; i.e., there is a codeword of weight i in the code iff there is one of weight $n - i$. Now let G' be the generator matrix G with its first row removed and S be the set of its n columns. Thus, G' is a generator matrix of a subcode of $\mathcal C$ that does not contain the all-one word. We know that for each nonzero $x \in \mathbb{F}_2^{k-1}$, the weight of $y := xG'$ is in the range $[d, n - d]$. Let n_0 and n_1 be the number of zeros and ones in y. Thus we know that $n_0 + n_1 = n$ and $n_0, n_1 \in [d, n - d]$, which means $|n_0 - n_1| \le n - 2d = (1 - 2d/n)|S|$. Note that the choices of x are in one-to-one correspondence with nonzero elements of $(\mathbb{F}_2^{k-1})^*$ and the outcomes y are in one-toone correspondence with evaluation table of nonzero linear forms over the set S. This means that the set *S* is ϵ -biased, for $\epsilon = 1 - 2d/n$.