Solutions 5

Exercise 5.1.

- 1. First, note that *G* has rank *k*, because of the triangular minor it contains. Moreover, the rows of *G*, when interpreted as polynomials, represent $g(x), xg(x), \ldots, x^{k-1}g(x)$ which form a basis for the ideal in $\mathbb{F}_2[x]/(x^n 1)$ generated by g(x), i.e., the code C.
- 2. For any codeword $c(x) = \sum_{i=0}^{n-1} c_i x^i$, we can write c(x) = f(x)g(x) for some polynomial f(x) of degree less than n k. Then

$$c(x)h(x) = f(x)g(x)h(x) = 0 \pmod{x^n - 1}.$$

The coefficient of x_j in this product is

$$\sum_{i=0}^{n-1} c_i h_{j-i} = 0, \ j = 0, \dots, n-1,$$
(1)

where the subscripts are taken modulo n. This gives us n check equations satisfied by the codewords of C. Let

$$H := \begin{pmatrix} h_k & h_{k-1} & \cdots & h_0 & 0 & 0 & \cdots & 0\\ 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0\\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0\\ 0 & 0 & 0 & \cdots & h_k & h_{k-1} & \cdots & h_0 \end{pmatrix}$$

Clearly, from (1), if $c \in C$ then $Hc^{\top} = 0$. Conversely, note that H has rank n - k because of the triangular minor it contains, so that the codition $Hc^{\top} = 0$ is a sufficient condition for c to be in C. Thus H is a parity check matrix for C.

3. From $g(x)h(x) = x^7 - 1$, we get that $h(x) = x^4 + x^2 + x + 1$, and thus by the result in the preceding section, we will have

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix},$$
$$H = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

This code is equivalent to a [7, 4, 3] Hamming code (i.e., it is the Hamming code up to a permutation of the codeword coordinates).

Exercise 5.2.

- 1. As *n* is relatively prime to the field size, $x^n 1$ has no duplicate factors and thus gcd(g(x), h(x)) = 1. Now we can apply Bezout's identity and conclude that there exist a(x) and b(x) such that a(x)g(x) + b(x)h(x) = gcd(g(x), h(x)) = 1.
- 2. We have that c(x) := a(x)g(x) = 1 b(x)h(x). Thus, for every codeword f(x), we will have

$$c(x)f(x) = f(x) - b(x)f(x)h(x) = f(x).$$

In particular, letting f(x) = c(x), we get that $c(x)^2 = c(x) \mod x^n - 1$. Also, since we know that every codeword w(x) of C can be written as a multiple of c(x), namely, w(x)c(x), it follows that c(x) generates C.

For the uniqueness, assume that there is a codeword c'(x) such that for all codewords f(x) of C, f(x)c'(x) = f(x). Now let f(x) = c(x); thus, c(x)c'(x) = c(x). Similarly, c having the same property implies that c'(x)c(x) = c'(x), which gives c(x) = c'(x).

Exercise 5.3.

- 1. If $c \in C_1 \cap C_2$ and c' is any cyclic shift of c, we must have that $c \in C_1$ thus $c' \in C_1$ and similarly, $c' \in C_2$, which means $c' \in C_1 \cap C_2$ and that $C_1 \cap C_2$ is cyclic. For the generator polynomial, let $g(x) = \text{LCM}(g_1(x), g_2(x))$; the least common multiple of $g_1(x)$ and $g_2(x)$. Every codeword in the intersection is divisible by both $g_1(x)$ and $g_2(x)$, and thus, by g(x). Conversely, every multiple of g(x) is both a multiple of $g_1(x)$ and $g_2(x)$ and must belongs to both codes. This means that $C_1 \cap C_2$ is generated by g(x).
- 2. Let $c := c_1 + c_2 \in C_1 + C_2$, where $c_1 \in C_1$ and $c_2 \in C_2$, and consider a cyclic shift of c, denoted by c', and corresponding cyclic shifts of c_1 and c_2 denoted by c'_1 and c'_2 , respectively. We must have that $c' = c'_1 + c'_2$, and c'_1 (resp., c'_2) must belong to C_1 (resp., C_2) by the properties of C_1 and C_2 . This means that $c' \in C_1 + C_2$ and thus $C_1 + C_2$ is cyclic. Now consider the polynomial $g(x) = \gcd(g_1(x), g_2(x))$. First we observe that every multiple of $g_1(x)$ or $g_2(x)$ is a multiple of g(x) as well, which means that the code generated by g(x) contains both C_1 and C_2 and hence $C_1 + C_2$. Now, by Bezout's identity,

$$g(x) = a(x)g_1(x) + b(x)g_2(x) \mod x^n - 1$$

for some a(x), b(x), so that every multiple of g(x) (e.g., g(x)u(x)) can be written as the summation $a(x)u(x)g_1(x) + b(x)u(x)g_2(x)$ which is a multiple of $g_1(x)$ plus a multiple of $g_2(x)$. Thus the code generated by g(x) is contained in $C_1 + C_2$. We conclude that $C_1 + C_2$ is the cyclic code generated by g(x).

Exercise 5.4.

1. Suppose that λ is a nonzero linear form on \mathbb{F}_2^k . Its image is nontrivial, so that its kernel has dimension k - 1; this means that λ vanishes on exactly half the points of \mathbb{F}_2^k . Thus the solution spaces of $\lambda(x) = 0$ and $\lambda(x) = 1$ have equal size.

- 2. By the definition of the ϵ -biased set, in each codeword of the evaluation code the number of zeros and ones differ by at most $\epsilon |S|$. As the length of the code of |S|, each codeword will have weight (thus, the code will have minimum distance) at least $(1-\epsilon)|S|/2$. In particular, the left kernel of a generator matrix of the code whose columns form the set *S* must be trivial, which means that the dimension of the code is *k*.
- 3. As the all-one word is a codeword and the code is linear, the weight distribution of the code is symmetric; i.e., there is a codeword of weight *i* in the code iff there is one of weight n i. Now let G' be the generator matrix G with its first row removed and S be the set of its n columns. Thus, G' is a generator matrix of a subcode of C that does not contain the all-one word. We know that for each nonzero $x \in \mathbb{F}_2^{k-1}$, the weight of y := xG' is in the range [d, n d]. Let n_0 and n_1 be the number of zeros and ones in y. Thus we know that $n_0 + n_1 = n$ and $n_0, n_1 \in [d, n d]$, which means $|n_0 n_1| \leq n 2d = (1 2d/n)|S|$. Note that the choices of x are in one-to-one correspondence with nonzero elements of $(\mathbb{F}_2^{k-1})^*$ and the outcomes y are in one-to-one state the set S is ϵ -biased, for $\epsilon = 1 2d/n$.