
Introduction to Coding Theory - Spring 2010 Solutions 5

Solutions 5

Exercise 5.1.

1. First, note that G has rank k, because of the triangular minor it contains. Moreover, the
rows ofG, when interpreted as polynomials, represent g(x), xg(x), . . . , xk−1g(x) which
form a basis for the ideal in F2[x]/(xn − 1) generated by g(x), i.e., the code C.

2. For any codeword c(x) =
∑n−1

i=0 cix
i, we can write c(x) = f(x)g(x) for some polyno-

mial f(x) of degree less than n− k. Then

c(x)h(x) = f(x)g(x)h(x) = 0 (mod xn − 1).

The coefficient of xj in this product is

n−1∑
i=0

cihj−i = 0, j = 0, . . . , n− 1, (1)

where the subscripts are taken modulo n. This gives us n check equations satisfied by
the codewords of C. Let

H :=


hk hk−1 · · · h0 0 0 · · · 0
0 hk hk−1 · · · h0 0 · · · 0

0 0
. . . . . . . . . . . . . . . 0

0 0 0 · · · hk hk−1 · · · h0


Clearly, from (1), if c ∈ C thenHc> = 0. Conversely, note thatH has rank n−k because
of the triangular minor it contains, so that the coditionHc> = 0 is a sufficient condition
for c to be in C. Thus H is a parity check matrix for C.

3. From g(x)h(x) = x7 − 1, we get that h(x) = x4 + x2 + x + 1, and thus by the result in
the preceding section, we will have

G =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 ,

H =

1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .

This code is equivalent to a [7, 4, 3] Hamming code (i.e., it is the Hamming code up to
a permutation of the codeword coordinates).
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Exercise 5.2.

1. As n is relatively prime to the field size, xn − 1 has no duplicate factors and thus
gcd(g(x), h(x)) = 1. Now we can apply Bezout’s identity and conclude that there exist
a(x) and b(x) such that a(x)g(x) + b(x)h(x) = gcd(g(x), h(x)) = 1.

2. We have that c(x) := a(x)g(x) = 1− b(x)h(x). Thus, for every codeword f(x), we will
have

c(x)f(x) = f(x)− b(x)f(x)h(x) = f(x).

In particular, letting f(x) = c(x), we get that c(x)2 = c(x) mod xn − 1. Also, since
we know that every codeword w(x) of C can be written as a multiple of c(x), namely,
w(x)c(x), it follows that c(x) generates C.

For the uniqueness, assume that there is a codeword c′(x) such that for all codewords
f(x) of C, f(x)c′(x) = f(x). Now let f(x) = c(x); thus, c(x)c′(x) = c(x). Similarly, c
having the same property implies that c′(x)c(x) = c′(x), which gives c(x) = c′(x).

Exercise 5.3.

1. If c ∈ C1 ∩ C2 and c′ is any cyclic shift of c, we must have that c ∈ C1 thus c′ ∈ C1 and
similarly, c′ ∈ C2, which means c′ ∈ C1 ∩ C2 and that C1 ∩ C2 is cyclic. For the generator
polynomial, let g(x) = LCM(g1(x), g2(x)); the least common multiple of g1(x) and
g2(x). Every codeword in the intersection is divisible by both g1(x) and g2(x), and
thus, by g(x). Conversely, every multiple of g(x) is both a multiple of g1(x) and g2(x)
and must belongs to both codes. This means that C1 ∩ C2 is generated by g(x).

2. Let c := c1 + c2 ∈ C1 + C2, where c1 ∈ C1 and c2 ∈ C2, and consider a cyclic shift
of c, denoted by c′, and corresponding cyclic shifts of c1 and c2 denoted by c′1 and c′2,
respectively. We must have that c′ = c′1 + c′2, and c′1 (resp., c′2) must belong to C1 (resp.,
C2) by the properties of C1 and C2. This means that c′ ∈ C1 + C2 and thus C1 + C2 is
cyclic. Now consider the polynomial g(x) = gcd(g1(x), g2(x)). First we observe that
every multiple of g1(x) or g2(x) is a multiple of g(x) as well, which means that the code
generated by g(x) contains both C1 and C2 and hence C1+C2. Now, by Bezout’s identity,

g(x) = a(x)g1(x) + b(x)g2(x) mod xn − 1

for some a(x), b(x), so that every multiple of g(x) (e.g., g(x)u(x)) can be written as the
summation a(x)u(x)g1(x) + b(x)u(x)g2(x) which is a multiple of g1(x) plus a multiple
of g2(x). Thus the code generated by g(x) is contained in C1 + C2. We conclude that
C1 + C2 is the cyclic code generated by g(x).

Exercise 5.4.

1. Suppose that λ is a nonzero linear form on Fk
2 . Its image is nontrivial, so that its kernel

has dimension k − 1; this means that λ vanishes on exactly half the points of Fk
2 . Thus

the solution spaces of λ(x) = 0 and λ(x) = 1 have equal size.
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2. By the definition of the ε-biased set, in each codeword of the evaluation code the num-
ber of zeros and ones differ by at most ε|S|. As the length of the code of |S|, each code-
word will have weight (thus, the code will have minimum distance) at least (1−ε)|S|/2.
In particular, the left kernel of a generator matrix of the code whose columns form the
set S must be trivial, which means that the dimension of the code is k.

3. As the all-one word is a codeword and the code is linear, the weight distribution of
the code is symmetric; i.e., there is a codeword of weight i in the code iff there is one
of weight n − i. Now let G′ be the generator matrix G with its first row removed
and S be the set of its n columns. Thus, G′ is a generator matrix of a subcode of C
that does not contain the all-one word. We know that for each nonzero x ∈ Fk−1

2 , the
weight of y := xG′ is in the range [d, n − d]. Let n0 and n1 be the number of zeros
and ones in y. Thus we know that n0 + n1 = n and n0, n1 ∈ [d, n − d], which means
|n0 − n1| ≤ n − 2d = (1 − 2d/n)|S|. Note that the choices of x are in one-to-one
correspondence with nonzero elements of (Fk−1

2 )∗ and the outcomes y are in one-to-
one correspondence with evaluation table of nonzero linear forms over the set S. This
means that the set S is ε-biased, for ε = 1− 2d/n.
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