
Introduction to Coding Theory - Spring 2010 Solutions 7

Solutions 7

Exercise 7.1. Note that x2 + x + 1 is a divisor of x15 − 1. Let ω be such that ω2 + ω + 1 = 0.
Then x2 +x+ 1 has the root ω = αi for some primitive 15th root of unity α. Thus C is a BCH
code with minimum distance d ≥ 2 (note that ω2 is also a root of x2 + x+ 1, but since ω and
ω2 are not successive powers of α, the BCH bound does not give us d ≥ 3 but only d ≥ 2).
Moreover, (x+ 1)(x2 + x+ 1) = x3 + 1 is a codeword of weight 2, so that d = 2.

To show that C cannot be a Goppa code, we will show that it does not satisfy the lower
bound on the minimum distance satisfied by Goppa codes. Suppose that C is a Goppa code
with Goppa polynomial g(z) of degree t and minimum distance d. If t > 1, then by Theorem
6.4 of the course notes, we must have d ≥ t + 1 > 2, so that g(z) must be of degree 1. But
then by Theorem 6.7, we must have d ≥ 2t+ 1 = 3. Therefore C cannot be a Goppa code.

Exercise 7.2.

1. We have deg(g) = 2 =: t, so the minimum distance of the code is at least 2 ·2+1 = 5 (as
the code is binary and g(z) has no multiple roots, we have d ≥ 2t+1). The dimension of
the code is at least n−mt where n is the length (i.e., 8) and m is the degree of extension
where L is defined (i.e., 3). Thus, the dimension is at least 2.

2. The check matrix is

H =
(
g(0)−1 g(α0)−1 . . . g(α6)−1

0g(0)−1 α0g(α0)−1 . . . α6g(α6)−1

)
,

which is, from the given field representation,(
1 1 α2 α4 α2 α1 α1 α4

0 1 α3 α6 α5 α5 α6 α3

)
,

or, in binary form, 

1 1 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 1 1 1 0 0 1
0 1 1 1 1 1 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

 .

3. We can obtain a generator matrix from H , which is(
0 0 1 1 1 1 1 1
1 1 0 0 1 0 1 1

)
,

and from that derive the list of four codewords

(0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 1, 1, 1, 1, 1, 1)
(1, 1, 0, 0, 1, 0, 1, 1)
(1, 1, 1, 1, 0, 1, 0, 0).
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Exercise 7.3.
First note that we have implicitely assumed in the problem statement that n is odd. In-

deed, there can be no primitive n-th root of unity in a field F2m for n = 2n′. To see this,
consider the set of roots of x2n′ − 1 in F2m . Since we are working over a field of characteristic
2, we have

(x2n′ − 1) = (xn′ − 1)2

so that an n-th root of unity is also an n′-th root of unity and is thus not primitive (its order
is less than n).

1. The coefficient vector of A(z) can be written as
A0

A−1
...

A−(n−1)

 =


1 1 . . . 1
1 α−1 . . . α−(n−1)

...
...

. . .
...

1 α−(n−1) . . . α−(n−1)(n−1)




a0

a1
...

an−1

 (1)

and then the coefficient vector of the transformation
∑n−1

i=0 A(αi)xi is defined by the
product 

1 1 . . . 1
1 α1 . . . α(n−1)

...
...

. . .
...

1 α(n−1) . . . α(n−1)(n−1)




A0

A−1
...

A−(n−1)


Thus in order to show that this produces a(x)/n, it is sufficent to verify that

1 1 . . . 1
1 α−1 . . . α−(n−1)

...
...

. . .
...

1 α−(n−1) . . . α−(n−1)(n−1)




1 1 . . . 1
1 α1 . . . α(n−1)

...
...

. . .
...

1 α(n−1) . . . α(n−1)(n−1)

 = nIn.

The entry at position (i+ 1, j + 1) of the product on the left hand side is

n−1∑
k=0

αikα−jk =
n−1∑
k=0

α(i−j)k =
{
n if i− j = 0,
0 otherwise.

Thus

a(x) =
1
n

n−1∑
i=0

A(αi)xi =
n−1∑
i=0

A(αi)xi.

2. This is a direct corollary of the previous part.

3. In the definition of Ra(z), multiply both sides by (zn + 1) and observe that (zn + 1) =
(z + 1)(z + α) · · · (z + αn−1).

4. The left hand side has degree n while the right hand side has degree less than n. Thus,
the equivalence holds iff

zn + 1 + z
∏
j 6=i

(z + αj) =
n−1∑
j=0

α−ijzj .
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Now we multiply both sides by z + αi to obtain the equation

αi(zn + 1) = (z + αi)
n−1∑
j=0

α−ijzj .

But the right hand side simplifies to

(z + αi)
1 + α−inzn

1 + α−iz
= (z + αi)

αi(1 + zn)
αi + z

= αi(1 + zn).

which proves the identity.

5. By part 3 we have

z(zn + 1)Ra(z) =
n−1∑
i=0

aiz
∏
j 6=i

(z + αj),

which, combined with part 4, gives

z(zn + 1)Ra(z) ≡
n−1∑
i=0

ai

n−1∑
j=0

α−ijzj (mod zn + 1),

but the right hand side is A(z).

6. We know that (a0, . . . , an−1) is a codeword iff Ra(z) ≡ 0 mod g(z). Since g(z) does
not have any αi as a root, it is relatively prime with zn + 1. Thus (a0, . . . , an−1) is
a codeword iff Ra(z)(zn + 1) ≡ 0 mod g(z). Also, 1/z ≡ zn−1 mod (zn + 1). This
combined with the previous part shows the claim.

Exercise 7.4.

1. The coefficient vector of A(αz) is (α0A0, α
1A−1, . . . , α

n−1A−(n−1)), and similar to (1),
this is given by the transformation

A0

αA−1
...

αn−1A−(n−1)

 =


1 1 . . . 1
α 1 . . . α−(n−2)

...
...

. . .
...

αn−1 1 . . . α−(n−2)(n−1)




a0

a1
...

an−1


But this is the same as applying the transformation in (1) on a cyclic shift of (a0, . . . , an−1),
which implies that A′(z) = A(αz).

2. Becuase (a0, . . . , an−1) has even weight, A0 =
∑n−1

i=0 ai = 0 and thus A(z) is divisible
by z, and the remainder of A(z)/z by zn + 1 is exactly the polynomial A(z)/z. Now
we can use the result in the last part of the previous exercise to show that A(z)/z ≡ 0
mod g(z).
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3. Suppose that Γ is cyclic and g(z) has a nonzero root β. Now take an nonzero even
weight codeword (a0, . . . , an−1) (which must exist for any nontrivial linear code). By
the previous part, A(z)/z is a multiple of g(z). Because g(β) = 0, we have A(β) = 0.
Now applying the same argument on the cyclic shift of the codeword and using the
first part we get that A(αiβ) = 0 for every i = 0, . . . , n − 1. This means that A(z) has
n distinct root, which is not possible because it is nonzero and has degree less than n.
Thus Γ does not have a nonzero root and we can take it as zr for some r.
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