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Solutions 9

Exercise 9.1.

1. We know that C has minimum distance d if and only if every d − 1 columns of H are
linearly independent and some d columns are dependent. Thus if C is MDS, every
n − k columns are independent. Conversely, if every n − k columns are independent,
then d ≥ n− k + 1. By the Singleton bound, d = n− k + 1 and C is MDS.

2. It is enough to show that if C is MDS, C⊥ is MDS. H is a generator matrix for C⊥.
Since any n − k columns of H are linearly independent, only the zero codeword can
have zeros on n − k coordinates (another way to put this is to note that any n − k
coordinates of a codeword of C⊥ can be taken as message symbols, i.e., any n − k
coordinates generate the whole codeword). Thus the minimum distance of C⊥ is at
least k + 1. By the Singleton bound and using the fact that the dimension of C⊥ is
n− k, we get that the minimum distance is exactly k + 1 and C⊥ is MDS.

3. Let C be MDS, so that d = n − k + 1. We already know that any k columns of G are
linearly independent, i.e., any k coordinates of a codeword generate the codeword.
Given any d = n − k + 1 coordinates, take one of them together with the remaining
k−1 coordinates as message symbols. Set this single coordinate to 1 and the remaining
k− 1 to 0; this generates a codeword c which has weight at most n− k+ 1; hence c has
weight exactly d = n− k + 1 and its nonzero coordinates are exactly the d coordinates
that we picked.

Conversely, let C be such that for any d coordinates, there exists a codeword with
support exactly equal to these coordinates. Take in particular the codewords which
are not zero exactly on the first d coordinates, on the coordinates 2 to d + 1, on the
coordinates 3 to d + 2, etc. There are n − d + 1 such codewords, and they form an
independent set. But there can be no more than k independent codewords, so that
n− d+ 1 ≤ k, i.e., d ≥ n− k + 1. Then by the Singleton bound, d = n− k + 1 and C is
MDS.

Exercise 9.2.

1. If there was a Kk,2 subgraph, there would exist a pair of distinct codewords x, y that
agree on at least k coordinates, i.e., their distance would be at most n − k. However,
the distance of the code is n− k + 1, which is a contradiction.

2. This is obtained by counting the number of edges as the summation of left degrees
versus the summation of right degrees and equating the two quantities.

3. Define pi as in the hint. Then C is the expected number of common neighbors that two
randomly chosen and distinct codewords X and Y have. Define an indicator random
variable Ii which takes the value 1 if the ith left node is a common neighbor of X and
Y and zero otherwise. Thus,

C = E

[∑
i

Ii

]
=
∑
i

E[Ii],
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by the linearity of expectation. On the other hand, we obviously have E[Ii] = pi. This
means that C =

∑
i pi. Now observe that

pi =

(
ui
2

)(
`
2

) =
ui(ui − 1)
`(`− 1)

,

so that

C =
n∑
i=1

pi =
n∑
i=1

ui(ui − 1)
`(`− 1)

=
1

`(`− 1)

(∑
i

u2
i − `t

)
,

where we have used the fact that
∑

i ui = `t.

4. By Cauchy-Schwarz, the expression for C found above can be bounded as

C ≥ 1
`(`− 1)

(
(`t)2

n
− `t

)
=

t

n(`− 1)
(`t− n) .

On the other hand, C ≤ k − 1, thus

t

n(`− 1)
(`t− n) ≤ k − 1,

which after reordering gives the desired bound.

Exercise 9.3.

1. We show that S uniquely determines e. Suppose that there are two different choices
e and e′ of the error vector, each of weight at most τ such that H(c + e) = H(c + e′).
This would imply that H(e− e′) = 0, where e− e′ is a nonzero vector of weight at most
2τ < d. Then e− e′ would be a nonzero codeword of the code, which is a contradiction
as we know that no nonzero codeword can have weight less than d.

2. We have S> = H(c+ e) = Hc+He = He, as c is a codeword and thus Hc = 0.

3. This immediately follows from expanding the system of linear equations given by
S> = He, and observing that ej = 0 for every j /∈ J .

4. First we note that the multiplicative inverse of 1− αjx can be written as

1
1− αjx

≡ 1 + αjx+ (αjx)2 + · · ·+ (αjx)d−2 mod xd−1.

Substituting this identity in the summation
∑

j∈J
ej

1−αjx
and we obtain

∑
j∈J

ej
1− αjx

=
d−2∑
`=0

x`

∑
j∈J

ejα
`
j

 mod xd−1

which combined with the previous part gives the required identity.
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5. The degree bounds hold because of the bound on the number of errors, i.e., |J | ≤ τ .
Note that Λ(x), by its definition, factorizes to linear factors. Thus Λ(x) and Γ(x) are
relatively prime iff they do not share a root. This must be the case because if Λ(α−1

t ) =
0, then t ∈ J and

Γ(α−1
t ) := et

∏
m∈J\{t}

(1− αmα−1
t )

which is nonzero because the αi are distinct.

6. Using part 4 and the definition of Λ(x), we get

Λ(x)S(x) ≡
∑
j∈J

ej
∏
j∈J(1− αjx)
1− αjx

mod xd−1

which is indeed Γ(x).

7. As Λ(0) = 1, the polynomial Λ(x) has a multiplicative inverse in the ring Fq[x]/xd−1

and we can write
S(x) ≡ Γ(x)(Λ(x))−1 mod xd−1.

Substituting this in the assumption, we get

λ(x)Γ(x)(Λ(x))−1 ≡ γ(x) mod xd−1,

or,
λ(x)Γ(x) ≡ γ(x)Λ(x) mod xd−1.

Because the degree of both sides is already less than d− 1, we have in fact

λ(x)Γ(x) ≡ γ(x)Λ(x),

and thus Λ(x) | λ(x)Γ(x), which means Λ(x) | λ(x) because gcd(Λ(x),Γ(x)) = 1.

8. Let λ(x) =
∑τ

i=0 λix
i and γ(x) =

∑τ−1
i=0 γix

i. Then the identity

λ(x)S(x) ≡ γ(x) mod xd−1

can be written in the matrix form

S0 0 . . . 0
S1 S0 . . . 0
...

...
. . .

...
Sτ−1 Sτ−2 . . . 0
Sτ Sτ−1 . . . S0

Sτ+1 Sτ . . . S1
...

...
. . .

...
Sd−2 Sd−3 . . . Sd−τ−2




λ0

λ1
...
λτ

 =



γ0

γ1
...

γτ−1

0
0
...
0


And we know that any solution of this system for λ(x) satisfies Λ(x) | λ(x). Now if
λ(x) is nonzero, we know that the set of roots of λ determines a superset J ′ (of size at
most τ ) of the set of error locations J . Thus, using λ(x), one can form and solve the
system

(∀i = 1, . . . , τ) :
∑
j∈J ′

αijej = Si

for unknowns ej (which is known as erasure decoding) to find the error values.
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