Introduction to Coding Theory - Spring 2010 Solutions 9

Solutions 9

Exercise 9.1.

1. We know that C' has minimum distance d if and only if every d — 1 columns of H are
linearly independent and some d columns are dependent. Thus if C' is MDS, every
n — k columns are independent. Conversely, if every n — k columns are independent,
then d > n — k + 1. By the Singleton bound, d = n — k + 1 and C is MDS.

2. It is enough to show that if C' is MDS, C* is MDS. H is a generator matrix for C.
Since any n — k columns of H are linearly independent, only the zero codeword can
have zeros on n — k coordinates (another way to put this is to note that any n — &
coordinates of a codeword of C can be taken as message symbols, i.e., any n — k
coordinates generate the whole codeword). Thus the minimum distance of C* is at
least k + 1. By the Singleton bound and using the fact that the dimension of C* is
n — k, we get that the minimum distance is exactly k¥ + 1 and C* is MDS.

3. Let C be MDS, so that d = n — k + 1. We already know that any & columns of G are
linearly independent, i.e., any k£ coordinates of a codeword generate the codeword.
Given any d = n — k + 1 coordinates, take one of them together with the remaining
k—1 coordinates as message symbols. Set this single coordinate to 1 and the remaining
k — 1 to 0; this generates a codeword ¢ which has weight at most n — k + 1; hence c has
weight exactly d = n — k + 1 and its nonzero coordinates are exactly the d coordinates
that we picked.

Conversely, let C' be such that for any d coordinates, there exists a codeword with
support exactly equal to these coordinates. Take in particular the codewords which
are not zero exactly on the first d coordinates, on the coordinates 2 to d + 1, on the
coordinates 3 to d + 2, etc. There are n — d + 1 such codewords, and they form an
independent set. But there can be no more than & independent codewords, so that
n—d+1<kie,d>n—k+ 1. Then by the Singleton bound, d =n — k4 1 and C'is
MDS.

Exercise 9.2.

1. If there was a K}, 2 subgraph, there would exist a pair of distinct codewords z,y that
agree on at least £ coordinates, i.e., their distance would be at most n — k. However,
the distance of the code is n — k + 1, which is a contradiction.

2. This is obtained by counting the number of edges as the summation of left degrees
versus the summation of right degrees and equating the two quantities.

3. Define p; as in the hint. Then C'is the expected number of common neighbors that two
randomly chosen and distinct codewords X and Y have. Define an indicator random
variable I; which takes the value 1 if the ith left node is a common neighbor of X and
Y and zero otherwise. Thus,

C=E [ZI] = E[1],
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by the linearity of expectation. On the other hand, we obviously have E[/;] = p;. This
means that C' =), p;. Now observe that

(%) wilui—1)
T

so that

C_;pz_ -1 -1 (Zi:“?_@’

i=1
where we have used the fact that ), u; = ¢t.

4. By Cauchy-Schwarz, the expression for C' found above can be bounded as

1 (¢t)?
> ) = —n).
() ( n Et) ai—np -
On the other hand, C < k — 1, thus
! (lt—n)<k-1
n(f—1) =T

which after reordering gives the desired bound.

Exercise 9.3.

1. We show that S uniquely determines e. Suppose that there are two different choices
e and €’ of the error vector, each of weight at most 7 such that H(c +e) = H(c + €).
This would imply that H (e —¢’) = 0, where e — ¢’ is a nonzero vector of weight at most
27 < d. Then e — ¢/ would be a nonzero codeword of the code, which is a contradiction
as we know that no nonzero codeword can have weight less than d.

2. Wehave ST = H(c+e¢) = Hc+ He = He, as cis a codeword and thus Hc = 0.

3. This immediately follows from expanding the system of linear equations given by
ST = He, and observing that e¢; = 0 for every j ¢ J.

4. First we note that the multiplicative inverse of 1 — ;= can be written as

1
1—ajx

=14 ajz+ ()’ + -+ (ajz)4? mod 2971

€j

Substituting this identity in the summation } ;. ; ;=2 and we obtain
J

.. d—2
S =Yt (Yol | moa st
1—ajz
=0

jed j€J

which combined with the previous part gives the required identity.
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5. The degree bounds hold because of the bound on the number of errors, ie., |J| < 7.
Note that A(x), by its definition, factorizes to linear factors. Thus A(z) and I'(z) are
relatively prime iff they do not share a root. This must be the case because if A(a; ') =
0,thent € J and

Dl ) == e H (1— ama; )
meJ\{t}
which is nonzero because the «; are distinct.

6. Using part 4 and the definition of A(z), we get

ejllic (1 —ajx
A(x)S(x) = Z e )

- 1—ajx
jeJ

mod 7!

which is indeed I'(z).
7. As A(0) = 1, the polynomial A(z) has a multiplicative inverse in the ring F,[z] /x4~
and we can write
S(x) =T(x)(A(2z))™" mod 2%t
Substituting this in the assumption, we get
M) (2)(A(2)) ™" =4(z) mod 27,

. Az)D(z) = y(x)A(z) mod 2%t
Because the degree of both sides is already less than d — 1, we have in fact
A@)T(z) = v(2)A(z),
and thus A(z) | A(z)I'(z), which means A(z) | A(z) because ged(A(z),[(x)) = 1.
8. Let \(z) = S°7_y Miz? and () = Y27_ viz". Then the identity
AMz)S(x) = y(z) mod x4t

can be written in the matrix form

S() 0 cee 0 Yo

Sl So . 0 Y1

: : . : Ao :
Sr_1 S;r_o ... 0 A1 Yr—1

Sr  Sr_1 ... So - 0

ST+1 ST PN 51 )\T 0

Sa—2 Sa-3 .-+ Sq—r-2 0

And we know that any solution of this system for A(z) satisfies A(z) | A(z). Now if
A(x) is nonzero, we know that the set of roots of A determines a superset .J' (of size at
most 7) of the set of error locations J. Thus, using A(x), one can form and solve the
system
Mi=1,...,7): Zaé»ej =5
jeS
for unknowns e; (which is known as erasure decoding) to find the error values.



