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Exercise Sheet 1

Exercise 1.1.
Let C be a channel with matrix P = (p(y|x)), input alphabet Σ and output alphabet O.

Recall the following definitions from the lecture.

A channel is called input (output) symmetric if there exist permutations µ and τ on Σ and
O, respectively, with µq = idΣ and τ q = idO, where q = |Σ|, such that all orbits of µ (all orbits
of τ ) have q elements and such that for all x ∈ Σ and y ∈ O we have p(y|x) = p(τ(y)|µ(x)).

A channel is called binary if Σ has only two elements. A binary symmetric channel is a
binary channel that is symmetric. In all these cases, the permutations µ and τ giving rise to
the definitions are involutions, i.e., µ2 = idΣ and τ2 = idO.

We define the error probability of an input symmetric binary channel as

1
2

∫
O

min(p(τ(y)|1), p(y|1))dy,

where we assume that 1 ∈ Σ.

1. Let Σ = O = {0, 1},, ε ∈ [0, 1], p(0|0) = p(1|1) = 1 − ε and p(0|1) = p(1|0) = ε.
This channel is the binary symmetric channel with crossover probability ε, denoted by
BSC(ε). Show that BSC(ε) is symmetric, that is, define the corresponding maps µ and
τ. What is its error probability? What is its capacity?

2. Let Σ = {0, 1}, O = {0, 1,E}, 0 ≤ ε ≤ 1, and let

p(y|x) =


1− ε if y = x
ε if y = E
0 otherwise.

This is the binary erasure channel with probability ε, denoted by BEC(ε). Show that
BEC(ε) is an input symmetric channel. What is its error probability? What is its capac-
ity?

3. Let Σ = {−1,+1}, O = R, σ ∈ R>0, and p(y, a) = 1
2
√
πσ

e−(x−a)2/4σ for a ∈ {−1,+1}.
This channel is the binary input additive white Gaussian noise channel with variance σ,
and is denoted by AWGN(σ). Show that AWGN(σ) is symmetric. What is its error
probability?

Exercise 1.2. Show that for a fixed length n, the Hamming distance is a metric on the space
of the words of that length. Recall that a metric function satisfies the following conditions:

1. d(x, y) ≥ 0 (non-negativity).

2. d(x, y) = 0 if and only if x = y (identity of indiscernibles).

1



Introduction to Coding Theory - Spring 2010 Exercise Sheet 1

0

1 1

01− ε

1− ε

ε

ε

0

1 1

0

E

1− ε

1− ε

ε

ε

1−1

1
2
√
πσ

e
−(x−1)2

4σ
1

2
√
πσ

e
−(x+1)2

4σ

(a) (b) (c)

Figure 1: (a) The binary symmetric channel, (b) The binary erasure channel, (c) The binary
input AWGN channel

3. d(x, y) = d(y, x) (symmetry).

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

Exercise 1.3.
Consider the q-ary symmetric channel with probability ε. It is defined as follows: Let

|Σ| = q, and O := Σ. Further, let 0 ≤ ε ≤ (q − 1)/q, and let p(y|x) = 1 − ε if y = x, and
p(y|x) = ε/(q − 1) if y 6= x.

For y ∈ Σn, show that any vector z of minimum Hamming distance to y maximizes∏n
i=1 p(yi|zi).

Exercise 1.4. In his seminal paper “A Mathematical Theory of Communication”, Shannon
justifies the definition of entropy as

H(p1, . . . , pn) = −
∑
i

pi log pi (1)

by starting from a set of axioms that we expect any “measure of uncertainty” to satisfy, and
proving that any function satisfying these axioms must be of the form given in equation
(1), up to a multiplicative constant. More precisely, suppose we have a set of n events with
probabilities p1, . . . , pn. We are uncertain as to which event will occur, and we would like to
define a measure H(p1, . . . , pn) of this uncertainty. We would like this measure to satisfy the
following intuitive axioms:

1. H is continuous in the pi.

2. If all the pi are equal, pi = 1
n , thenH is a monotonic increasing function of n. Intuitively,

this means that when all events are equally likely, there is more uncertainty when there
are more events.

3. If a choice is broken down into two successive choices, the original H should be the
weighted sum of the individual values of H. By breaking down a choice, we mean the
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following: any subset of k events, say the k first events, can be grouped into one new
event of probability

p′1 =
k∑
i=1

pi.

Then this new event can be decomposed again into k events of probability π1, . . . , πk,
with πi = pi

p1+···+pk . Then choosing an event can be represented in two ways: on one
hand, we can choose one of the original n events with probabilities p1, . . . , pn, and
on the other hand, we can choose one of the new n − k + 1 events with probabili-
ties p′1, pk+1, . . . , pn, and if the first event occurs, make another choice with probability
vector π1, . . . , πk. We would like the entropy to be the same in both cases, that is,

H(p1, . . . , pn) = H(p′1, pk+1, . . . , pn) + p′1H(π1, . . . , πk).

Note that the entropy term H(π1, . . . , πk) is weighted by p′1 because this is the proba-
bility with which the second choice occurs.

We would like to prove that the only H satisfying the three axioms above is of the form

H(p1, . . . , pn) = −K
n∑
i=1

pi log pi,

where K is a positive constant.

1. Let A(n) := H
(

1
n , . . . ,

1
n

)
. Let s and t be integers. Using Axiom 3, show that A(sm) =

mA(s). For n as large as we want, we can always find an m such that

sm ≤ tn < sm+1.

Using Axiom 2, deduce that
m

n
≤ A(t)
A(s)

≤ m

n
+

1
n

and finally that A(t) = K log t.

2. Suppose the pi are commensurable probabilities, that is, they can be written as pi =
niP
j nj

(in other words, the ratio between any two probabilities is always a rational
number). Using Axiom 3, prove that

K log
∑

ni = H(p1, . . . , pn) +K
∑

pi log ni.

Deduce that we have, in this case,

H(p1, . . . , pn) = −K
∑

pi log pi.

3. Now handle the incommensurable case by approximating the pi by rational numbers
and using Axiom 1.
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Exercise 1.5.
Let p(x) and q(x) be two probability distributions. The relative entropy or Kullback-Leibler

distance between p and q is defined as

D(p||q) =
∑
x

p(x) log
p(x)
q(x)

= Ep log
p(X)
q(X)

.

The relative entropy is a measure of the “distance” between two distributions: if p(x) = q(x)
for every value x, then D(p||q) = 0.

Let X and Y be two random variables with joint distribution p(x, y) and marginal distri-
butions p(x) =

∑
y p(x, y) and p(y) =

∑
x p(x, y).We define the mutual information I(X;Y ) as

the relative entropy between the joint distribution p(x, y) and the product of the marginals
p(x)p(y) :

I(X;Y ) = D(p(x, y)||p(x)p(y)) =
∑
x

∑
y

p(x, y) log
p(x, y)
p(x)p(y)

.

Intuitively, the mutual information is the cost of assuming that the variablesX and Y are
independent when they are not. Note that if X and Y are independent, I(X;Y ) = 0.

1. Recall the definition of the joint entropy between X and Y as

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y)

and the conditional entropy H(X|Y ) as

H(X|Y ) =
∑
y

p(y)H(X|Y = y) = −
∑
y

p(y)
∑
x

p(x|y) log p(x|y) =
∑
x,y

p(x, y) log p(x|y).

H(Y |X) is defined similarly.

Prove that

• I(X;X) = H(X)

• I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

• I(X;Y ) = I(Y ;X) = H(X) +H(Y )−H(X,Y ).

From these properties we can view the mutual information, intuitively, as a measure of
the amount of information that one random variable contains about another random
variable.

We can also deduce the chain rule for entropy:

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ).

This means that the uncertainty of the joint distribution of X and Y is identical to
the uncertainty of one of the random variables plus the remaining uncertainty in the
second when the first is known.
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2. LetX1, . . . , Xn be discrete random variables with joint distribution p(x1, . . . , xn). Their
joint entropy is defined similarly as

H(X1, . . . , Xn) = −
∑

x1,...,xn

p(x1, . . . , xn) log p(x1, . . . , xn).

Using the chain rule for two variables, prove that

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|Xi−1, . . . , X1).

3. Using the definition of relative entropy and of conditional probability, prove that

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) +D(p(y|x)||q(y|x)).

Exercise 1.6. Recall Jensen’s inequality: For f a convex function and X a discrete random
variable,

E[f(x)] ≥ f(E(X)).

If f is strictly convex, this is true with equality only if X = E[X] almost surely (i.e, X is a
constant).

1. Applying Jensen’s inequality to the logarithm function, which is strictly concave, show
that

D(p||q) ≥ 0, (2)

with equality if and only if p(x) = q(x) for all x.

Deduce that for any pair X,Y of random variables, we have

I(X,Y ) ≥ 0, (3)

with equality if and only if X and Y are independent.

2. Let X take its values in the set χ. Deduce from (2) that H(X) ≤ log |χ|, with equality if
and only if X is uniformly distributed over χ.
Hint: consider D(p||u), where u is the uniform distribution over χ.

3. Deduce from (3) that H(X|Y ) ≤ H(X), and then that

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi),

with equality if and only if the Xi are independent.
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