Exercise Sheet 11

Exercise 11.1. Show that any $m \times n$ matrix of rank r can be written as a product of an $m \times r$ matrix by an $r \times n$ matrix. Conclude that low-rank matrices have a "compact" representation.

Exercise 11.2. Recall Sudan's list-decoding algorithm: given n pairs of points (x_i, y_i) , the problem was to solve the system

$$X \begin{pmatrix} A_{\ell} \\ A_{\ell-1} \\ \vdots \\ A_0 \end{pmatrix} = 0.$$

Here

$$X = \left(D^{\ell} V_{n,e} \mid D^{\ell-1} V_{n,e+(k-1)} \mid \dots \mid D V_{n,e+(\ell-1)(k-1)} \mid V_{n,e+\ell(k-1)} \right),$$
$$D = \left(\begin{array}{ccc} y_{1} \\ & \ddots \\ & & y_{n} \end{array} \right), \quad V_{n,m} = \left(\begin{array}{cccc} 1 & x_{1} & \cdots & x_{1}^{t-1} \\ 1 & x_{2} & \cdots & x_{2}^{t-1} \\ 1 & x_{2} & \cdots & x_{2}^{t-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & \cdots & x_{n}^{t-1} \end{array} \right),$$

and A_0, \ldots, A_ℓ are column vectors of appropriate dimensions, for integers e, k, ℓ depending on the code parameters.

- 1. Find matrices A and B such that $A(D^iV_{n,t}) (D^iV_{n,t}) B$ has rank 1.
- 2. Find a displacement operator for the matrix *X* such that *X* has displacement rank $\ell + 1$ with respect to this operator.

Exercise 11.3. Let *T* be a $t \times t$ Toeplitz matrix, defined as

$$T = \begin{pmatrix} a_1 & a_2 & \cdots & a_t \\ a_2 & a_3 & \cdots & a_{t+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_t & a_{t+1} & \cdots & a_{2t-1} \end{pmatrix}.$$

Find matrices A and B such that AT - TB has rank 2.

Exercise 11.4. Let x_1, \ldots, x_n and y_1, \ldots, y_n be two sets of elements in a field \mathbb{F} , and suppose that for all *i* and *j* we have $x_i \neq y_j$. The matrix $C = (1/(x_i - y_j))_{i,j}$ is called a *Cauchy matrix*. Find two diagonal matrices *L* and *U* such that *C* has displacement rank 2 with respect to $\nabla_{L,U}$.