Exercise Sheet 3

Exercise 3.1. Let $x \in \mathbb{F}_2^n$ be of weight d. What is the number of binary vectors of weight w that are orthogonal to x? (*Hint:* Use MacWilliams identities.)

Exercise 3.2. In this exercise, we will look at two common procedures for creating new codes from old ones.

- 1. **Puncturing.** Let C be an $[n, k, d]_q$ -code. The *punctured code at position i*, denoted C^i , is the set of words $(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$ of length n-1 formed by removing the ith coordinate of each codeword. Show that C^i is a linear code. What are its parameters?
- 2. **Shortening.** Let C be an $[n, k, d]_q$ -code. The *shortened code* C_i is formed as follows: let C' be the intersection of C with the hyperplane $\{x \in \mathbb{F}_q^n : x_i = 0\}$. C_i is then formed by puncturing C' at position i. Show that C_i is a linear code. What are its parameters?
- 3. Show that

$$(C^{\perp})_i = (C^i)^{\perp}.$$

Exercise 3.3. The *extended Hamming code* is constructed as follows: start with the $[7, 4, 3]_2$ -Hamming code and add a position to each codeword. In that position, put a 1 if the codeword is of odd weight, and put a 0 otherwise.

- 1. Show that the extended Hamming code is an $[8, 4, 4]_2$ -code and find a generator and a check matrix for this code.
- 2. Show that the dual of the extended Hamming code is equal to the code itself.

Exercise 3.4. An $[n, k, d]_q$ -code is called *perfect* if the Hamming balls of radius (d-1)/2 around the codewords form a disjoint union of \mathbb{F}_q^n . Show that binary Hamming codes are perfect.

Exercise 3.5. Given integers $N \le n$, $K \ge k$, and $D \ge d$, show that if there is no $[n, k, d]_q$ -code, then there is no $[N, K, D]_q$ -code.