Exercise Sheet 7

Exercise 7.1. Let C be the binary cyclic code of length 15 with generator $x^2 + x + 1$. Show that C is a BCH code but not a Goppa code.

Exercise 7.2.

- 1. Let $\Gamma = \Gamma(L,g)$ be a Goppa code with $L = \{0,1,\alpha,\ldots,\alpha^6\}$, where α is a primitive element of \mathbb{F}_8 , and $g(z) := z^2 + z + 1$. Find lower bounds on the dimension and the distance of this code.
- 2. Compute a parity check matrix for the code. Use the following binary representation of $\mathbb{F}_8 = \mathbb{F}_2[X]/(\alpha^3 + \alpha + 1)$:

i	representation of α^i
0	100
1	010
2	001
3	110
4	011
5	111
6	101

3. Find the list of codewords.

Exercise 7.3. Let $\Gamma = \Gamma(L, g)$ be a binary Goppa code of length n with $L = \{1, \alpha, \dots, \alpha^{n-1}\}$, where α is a primitive nth root of unity in \mathbb{F}_{2^m} .

1. For a polynomial $a(x) := \sum_{i=0}^{n-1} a_i x^i$, where $a_i \in \mathbb{F}_2$, define $A_i := a(\alpha^i)$ and $A(z) := \sum_{i=0}^{n-1} A_{-i} z^i$. This is called the *Mattson-Solomon polynomial* of a(x). Show the inverse relation

$$a(x) = \frac{1}{n} \sum_{i=0}^{n-1} A(\alpha^i) x^i.$$

2. Let

$$R_a(z) := \sum_{i=0}^{n-1} \frac{a_i}{z + \alpha^i}.$$

Show that $R_a(z) = \sum_{i=0}^{n-1} A(\alpha^i)/(z + \alpha^i)$.

- 3. Show that $(z^n + 1)R_a(z) = \sum_{i=0}^{n-1} a_i \prod_{j \neq i} (z + \alpha^j)$.
- 4. Show that

$$z\prod_{j\neq i}(z+\alpha^j)\equiv\sum_{j=0}^{n-1}\alpha^{-ij}z^j\pmod{z^n+1}.$$

(Hint: multiply both sides by $z + \alpha^i$).

5. Conclude that $A(z) \equiv z(z^n + 1)R_a(z) \pmod{z^n + 1}$.

6. Using previous parts, show that $(a_0, \dots a_{n-1}) \in \Gamma$ iff

$$(z^{n-1}A(z) \bmod (z^n+1)) \equiv 0 \pmod {g(z)}.$$

(Hint: First show that $(a_0, \dots a_{n-1})$ is a codeword iff $R_a(z)(z^n + 1) \equiv 0 \mod g(z)$.)

Exercise 7.4. Same as the previous exercise, let $\Gamma = \Gamma(L,g)$ be a binary Goppa code of length n with $L = \{1, \alpha, \dots, \alpha^{n-1}\}$, where α is a primitive nth root of unity in \mathbb{F}_{2^m} .

- 1. Let $a(x) = \sum_{i=0}^{n-1} a_i x^i$ and $a'(x) = x^{n-1} a(x) \pmod{x^n-1}$ be its cyclic shift. Show that $A'(z) = A(\alpha z)$.
- 2. Let $(a_0, \ldots a_{n-1})$ be a codeword of even weight and a(x) be its polynomial representation. Show that A(z) is divisible by z and A(z)/z is a multiple of g(z). (Hint: Use the previous exercise)
- 3. Show that if Γ is cyclic, then $g(z)=z^r$ for some r. (Hint: Show that if g has a nonzero root β over some extension field, then $A(\beta)=0$ for any even weight word. Then use cyclicity to conclude that A(z) would have too many roots.)