Exercise Sheet 8

Exercise 8.1. Consider the Reed Solomon code $RS(k; \mathbb{F}_q^*)$ which is the image of the map

$$\begin{aligned} \mathbb{F}_q[x]_{\leq k} &\to & (\mathbb{F}_q^*)^{q-1}, \\ f &\mapsto & (f(\alpha^0), f(\alpha^1), \dots, f(\alpha^{q-2})), \end{aligned}$$

where α is a primitive element of \mathbb{F}_q .

Prove that this code is the cyclic code with generator polynomial

$$g(x) = \prod_{j=1}^{q-1-k} (x - \alpha^j).$$

Thus $RS(k; \mathbb{F}_q^*)$ is a BCH code of length q - 1, dimension k and minimum distance equal to the designed distance q - k.

Exercise 8.2. Let $\alpha = (\alpha_1, ..., \alpha_n)$ where the α_i are distinct elements of \mathbb{F}_{q^m} , and let $v = (v_1, ..., v_n)$ where the v_i are nonzero but not necessarily distinct elements of \mathbb{F}_{q^m} . Then we define the *generalized RS code*, denoted by $\text{GRS}_k(\alpha, v)$, as the code consisting of all vectors

$$(v_1f(\alpha_1),\ldots,v_nf(\alpha_n)),$$

where f(x) range over all polynomials of degree $\langle k \rangle$ with coefficients from \mathbb{F}_{q^m} . Note that this is still an [n, k, n - k + 1]-code.

- 1. Show that the dual of $\text{GRS}_{n-1}(\alpha, v)$ is $\text{GRS}_1(\alpha, v')$ for some v'.
- 2. Deduce that the dual of $GRS_k(\alpha, v)$ is $GRS_{n-k}(\alpha, v')$ for the same v' as above.

Exercise 8.3. A linear $[n, k]_q$ -code is called "zero-divisor free", or ZDF, if for any two nonzero codewords x and y their point-wise product is nonzero.

- Show that an $[n, k]_q$ -ZDF code must have minimum distance at least k.
- Show that an $[n, k]_q$ Reed-Solomon code with minimum distance at least k is ZDF.