Exercise Sheet 8

Exercise 8.1. Consider the Reed Solomon code $RS(k; \mathbb{F}_q^*)$ which is the image of the map

$$
\mathbb{F}_q[x]_{
$$

where α is a primitive element of \mathbb{F}_q .

Prove that this code is the cyclic code with generator polynomial

$$
g(x) = \prod_{j=1}^{q-1-k} (x - \alpha^{j}).
$$

Thus $\text{RS}(k; \mathbb{F}_q^*)$ is a BCH code of length $q-1$, dimension k and minimum distance equal to the designed distance $q - k$.

Exercise 8.2. Let $\alpha = (\alpha_1, \dots, \alpha_n)$ where the α_i are distinct elements of \mathbb{F}_{q^m} , and let $v =$ (v_1, \ldots, v_n) where the v_i are nonzero but not necessarily distinct elements of \mathbb{F}_{q^m} . Then we define the *generalized RS code*, denoted by $GRS_k(\alpha, v)$, as the code consisting of all vectors

$$
(v_1f(\alpha_1),\ldots,v_nf(\alpha_n)),
$$

where $f(x)$ range over all polynomials of degree $\lt k$ with coefficients from \mathbb{F}_{q^m} . Note that this is still an $[n, k, n - k + 1]$ -code.

- 1. Show that the dual of $GRS_{n-1}(\alpha, v)$ is $GRS_1(\alpha, v')$ for some v' .
- 2. Deduce that the dual of $GRS_k(\alpha, v)$ is $GRS_{n-k}(\alpha, v')$ for the same v' as above.

Exercise 8.3. A linear $[n, k]_q$ -code is called "zero-divisor free", or ZDF, if for any two nonzero codewords x and y their point-wise product is nonzero.

- Show that an $[n, k]_q$ -ZDF code must have minimum distance at least k.
- Show that an $[n, k]_q$ Reed-Solomon code with minimum distance at least k is ZDF.