Exercice R.1. Soient V un espace vectoriel et $\mathcal{B} = \{e_n\}_{n \in \mathbb{N}}$ une base de V (ainsi, tout vecteur $x \in V$ est une combinaison linéaire finie d'éléments de \mathcal{B}). On suppose que V possède une seconde base $\mathcal{B}' = \{f_j\}_{j \in J}$. On se propose de démontrer que \mathcal{B}' est également dénombrable.

- 1. Montrer que J est infini.
- 2. Soit $n \in \mathbb{N}$. Montrer qu'il existe un ensemble fini $J_n \subseteq J$ tel que e_n appartienne au sous-espace engendré $\langle f_j; j \in J_n \rangle$.
- 3. Montrer que $J = \bigcup_{i \in \mathbb{N}} J_n$.
- 4. Conclure.

Exercice R.2. Donner une DNF, une CNF et une forme polynomiale de $\phi(x,y,z)={\rm NAND}({\rm NAND}(x,y),z)$. Montrer que le connecteur NAND et la constante 1 permettent d'exprimer toute fonction booléenne. Dessiner un diagramme calculant OR à l'aide de NAND et de 1 uniquement.

Exercice R.3. On dit qu'une relation d'équivalence \sim définie sur $\mathbb Z$ est une congruence si elle vérifie que pour tous $a,x,y\in\mathbb Z$, si $x\sim y$ alors $a+x\sim a+y$.

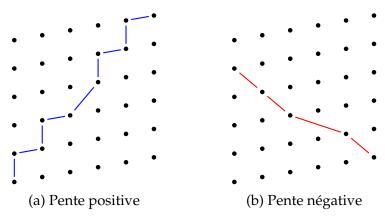
Montrez que \sim est forcément l'égalité ou bien il existe un entier q tel que \sim est la relation de congruence modulo q.

Exercice R.4. Soit $x \ge 1$. Simplifier la somme suivante

$$S(x) = \sum_{1 \le n \le x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor$$

où $\mu(n)$ représente la fonction de Möbius.

Exercice R.5. Soient n points du plan $(x_1, y_1), \ldots, (x_n, y_n)$ tels que tous les x_i et tous les x_j soient distincts. Un *chemin polygonal de pente positive* sur les points est un chemin qui connecte certains points entre eux par des segments de pente positive. On définit de même un *chemin polygonal de pente négative*. Un exemple est donné sur la figure plus bas. Montrer que si n = ab + 1, alors il existe soit un chemin polygonal de pente positive et de longueur a + 1, soit un chemin polygonal de pente négative et de longueur b + 1.



Exercice R.6. Pour quelles valeurs de n peut-on trouver un graphe simple à n sommets dont les degrés sont deux à deux distincts?

Exercice R.7. Soit $n \geq 5$. On considère un dessin arbitraire du graphe complet K_n dans le plan. Montrer qu'il y a au moins $\frac{1}{5}\binom{n}{4}$ couples d'arêtes qui se croisent. (Indication : on utilisera le fait que K_5 n'est pas planaire)

Exercice R.8. Montrer que le développement décimal du réel $(6+\sqrt{37})^{666}$ possède au moins 666 zéros consécutifs juste après la virgule.