ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Final Exam June 30, 2010

Introduction to Coding Theory

June 30, 2010

- Any document or material is forbidden, except a hand-written recto verso A4 formula sheet.
- Use a separate sheet of paper for every problem you are working on, write your name on and number additionnal sheets.
- There are a total of 105 points to obtain. You need at least 60 points to pass.
- You have exactly three hours. Good luck!

Name:

CONVENTIONS & REMINDERS

- $\bullet \ \mathbb{F}_q$ stands for the finite field with q elements, $\mathbb{Z}/n\mathbb{Z}$ stands for the ring of integers modulo n.
- A q-ary code of minimum distance d is called *perfect* if the space \mathbb{F}_q^n is exactly the disjoint union of the Hamming balls of radius $|(d - 1)/2|$ around the codewords.

Problem 1 [8 points]. Let C_1 be a $[n, k, d]_q$ -code and C_2 be a $[n, k-1, d+1]_q$ -code such that $C_2 \subseteq C_1$. We fix a vector $v \in C_1 \setminus C_2$.

- 1. Show that any codeword c of C_1 has a unique decomposition $c = w + xv$ where $w \in C_2$ and $x \in \mathbb{F}_q$.
- 2. Show that the set C of concatenated words (c, x) of length $n+1$, where $c = w + xv \in C_1$, is a $[n+1, k, d+1]_q$ -code.

Solution :

- 1. The code C_2 is a codimension 1 subspace of C_1 . As v doesn't belong to C_2 , C_1 = $C_2 \oplus \mathbb{F}_q v$, whence the result.
- 2. Either x is zero and c belongs to C_2 , then $(c, x) = (w, 0)$ has weight $\geq \min C_2 = d + 1$, or x is non zero and c has weight $\geq \min C_1 = d$, so (w, x) has weight $\geq d + 1$.

Problem 2 [30 points]. The goal of this problem is to study the asymptotic behavior of the largest possible dimension k of codes on \mathbb{F}_q when the minimum distance d is fixed and the length n goes to infinity. For fixed d and q , we define

$$
\varkappa_q(d) = \liminf_{n \to \infty} \left(\inf_{C \ [n,k,d]_q \text{-code}} \frac{n-k}{\log_q n} \right).
$$

1. (a) Prove that for any $[n, k, d]_q$ -code, we have

$$
n - k \ge \log_q \sum_{i=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} \binom{n}{i} (q-1)^i.
$$

(b) Show that $\log_q \sum_{i=0}^{\left\lfloor \frac{d-1}{2} \right\rfloor} \binom{n}{i}$ $\binom{n}{i}(q-1)^i \sim_{n \to \infty} \left\lfloor \frac{d-1}{2} \right\rfloor$ $\frac{-1}{2}$ $\log_q n$ and that

$$
\left\lfloor \frac{d-1}{2} \right\rfloor \leq \varkappa_q(d).
$$

- 2. (a) Let I_1 be $\{1, \ldots, d-1\}$ and $I_0 = I_1 \setminus (qI_1)$. What is the cardinality of I_0 ?
	- (b) Let α be a primitive element of \mathbb{F}_{q^m} and $g(x) \in \mathbb{F}_q[x]$ be the minimal polynomial of the set $(\alpha^i)_{i \in I_1}$. Consider $I \subseteq \mathbb{Z}/n\mathbb{Z}$ such that $g(x) = \prod_{i \in I} x - \alpha^i$. Show that

$$
I = I_0 \cup qI_0 \cup \cdots \cup q^{m-1}I_0 \mod n.
$$

Deduce an upper bound on I.

(c) Show that for any integer $m \geq 2$, there exists a code of parameters $[n, k, \geq d]_q$ with $n = q^m - 1$ and

$$
k \ge n - m\left(d - 1 - \left\lfloor \frac{d-1}{q} \right\rfloor\right).
$$

(d) Show that

$$
\varkappa_q(d) \le \left\lfloor \frac{(d-1)(q-1)}{q} \right\rfloor
$$

- 3. Compute explicitly the value of $\varkappa_2(d)$ for any d.
- 4. (a) Consider the q-ary Hamming code \mathcal{H}_m defined over \mathbb{F}_q by the following check matrix H_m ($m \geq 2$). The matrix H_m has m rows. For each line of \mathbb{F}_q^m , select an arbitrary basis vector and use it as a column of H_m . Show that \mathcal{H}_m is a $\left[n = \frac{q^m - 1}{q-1} \right]$ $\left[\frac{m-1}{q-1}, n-m, 3\right]$ q -code.
	- (b) Use the family of Hamming codes to prove that for any $q, \varkappa_q(3) = 1$.

Solution :

1. (a) This is the Hamming bound

(b) For fixed $d, A(n) = \sum_{i=0}^{\lfloor \frac{d-1}{2} \rfloor} {n \choose i}$ $\binom{n}{i}(q-1)^i$ is a polynomial of degree $\delta = \left\lfloor \frac{d-1}{2}\right\rfloor$ $\frac{-1}{2}$ in *n*, say $a_{\delta}n^{\delta}+\cdots+a_0$, so $\log_q\sum_{i=0}^{\left\lfloor\frac{d-1}{2}\right\rfloor}\binom{n}{i}$ $\int_{i}^{n} (q-1)^{i} = \log_{q} n^{\delta} + \log_{q} (a_{\delta} + a_{\delta-1} \frac{1}{n} + \cdots + a_{0} \frac{1}{n})$ $\frac{1}{n}$), which gives the equivalence. Now we deduce that for any code

$$
\frac{\log_q A(n)}{\log_q n} \le \frac{n-k}{\log_q n}
$$

But $\lim_{n\to\infty} \frac{\log_q A(n)}{\log_q n} = \delta$, so

$$
\left\lfloor \frac{d-1}{2} \right\rfloor \leq \varkappa_q(d).
$$

- 2. (a) $|I_0| \leq d-1 \left| \frac{d-1}{a} \right|$ $\frac{-1}{q}$.
	- (b) The roots of g are exactly the α^i for $i \in I_1$ and their conjugates under the action of the Frobenius, i.e. when i belongs to I, $q \cdot i \mod n$ belongs also to I. Since $I_1 \subseteq I_0 \cup qI_0$ and $J = I_0 \cup qI_0 \cup \cdots \cup q^{m-1}I_0 \mod n$ is stable under the multiplication by $q, I \subseteq J$.

On the other hand $I_0 \subseteq I_1 \subseteq I$ and J is the smallest stable set spanned by I_0 under the multiplication by q, so $J \subseteq I$.

It is thus clear that $|I| \le m |I_0| = m (d-1 - \left| \frac{d-1}{a} \right|)$ $\frac{-1}{q}$ $\Big|$ $\Big)$.

- (c) We consider the BCH code of designed distance d of length $n = q^m 1$. Its generating polynomial is exactly $g(x)$, thus its dimension k satisfies $n-k = \deg q =$ $|I| \leq m\left(d-1-\left|\frac{d-1}{a}\right|\right)$ $\frac{-1}{q}$ $\Big\vert$ $\Big)$.
- (d) From the previous question we know that when $n = q^m 1$,

$$
\inf \frac{n-k}{\log_q n} \le \frac{m \left\lfloor \frac{(d-1)(q-1)}{q} \right\rfloor}{\log_q n}
$$

But $m = \log_q(n+1) \sim_{n \to \infty} \log_q n$. So, taking the liminf,

$$
\varkappa_q(d) \le \left\lfloor \frac{(d-1)(q-1)}{q} \right\rfloor
$$

- 3. Both inequalities agrees and yield $\varkappa_2(d) = \left| \frac{d-1}{2} \right|$ $\frac{-1}{2}$.
- 4. (a) Any of the $|\mathbb{F}_q^m|-1$ non zero vectors of \mathbb{F}_q^m is the basis of a line, but $|\mathbb{F}_q^{\times}|=q-1$ vectors give rise to the same line, so there are exactly $n = \frac{q^m-1}{q-1}$ $\frac{q^{m}-1}{q-1}$ columns in H_m . The matrix H_m contains in particular a submatrix of the diagonal shape (the basis vectors of the axis), so its rank is m and $k = n-m$. Finally, there must be column vectors

$$
\begin{pmatrix} a \\ 0 \\ 0 \\ \vdots \end{pmatrix}, \quad \begin{pmatrix} 0 \\ b \\ 0 \\ \vdots \end{pmatrix}, \quad \begin{pmatrix} c \\ d \\ 0 \\ \vdots \end{pmatrix}
$$

with $abcd \neq 0$. So $(\frac{c}{a}, \frac{d}{b})$ $\frac{d}{b}$, -1, 0 · · ·) is a codeword of weight 3. On the other hand, any codeword of weight ≤ 2 would imply that two columns are linearly independent, which is excluded by construction.

(b) According to the previous question, inf $\frac{n-k}{\log_q n} \leq \frac{m}{\log_q \frac{q!}{n}}$ $\frac{m}{\log_q \frac{q^m-1}{q-1}}$. But $\log_q \frac{q^m-1}{q-1} \sim \log_q m$, so $\varkappa_q(3) \leq 1$. On the other hand, using the first question, $\varkappa_q(3) \geq 1$.

Problem 3 [15 points]. Let \mathbb{F}_{25} be given by $\mathbb{F}_{5}[\alpha]$ where $\alpha^{2} - \alpha + 2 = 0$. You can use without a proof that α spans the multiplicative group \mathbb{F}_{25}^{\times} . Consider the plane curve λ defined over \mathbb{F}_{25} by the equation

$$
y^2 = x^6 + 1.
$$

- 1. Show that $x^6 + 1$ is not a square and deduce that X is irreducible.
- 2. Show that the application $\mathcal{N}: z \mapsto z^6$ is a well-defined surjective group homomorphism from \mathbb{F}_{25}^{\times} to \mathbb{F}_{5}^{\times} .
- 3. Count the number of points of \mathcal{X} .
- 4. Give a basis of polynomial functions on $\mathcal X$ of degree $\lt 6, \lt 7$ and $\lt 8$.
- 5. Design linear codes with parameters $[44, 21, \geq 14]_{25}$, $[44, 27, \geq 8]_{25}$ and $[44, 33, \geq 2]_{25}$. Justify your answer.

Solution :

- 1. As α is primitive, $\alpha^{12} = -1$ and so $x^6 + 1 = \prod_{i=0}^5 (x \alpha^{2+4i})$ has 6 distinct roots. Thus it is not a square in $\mathbb{F}(x)$. (It is also possible to expand the polynomial $(x^3+ax^2+bx+1)^2$, identify the coefficients with $x^6 + 1$ and observe that this is impossible). The only factorisation of $y^2 - (x^6 + 1)$ in $\mathbb{F}(x)[y]$ would be $(y - a)(y + a)$ for some $a \in \mathbb{F}(x)$ but we have seen that this impossible.
- 2. $\mathcal N$ is clearly a group homomorphism, since the multiplication is commutative. Now $(x^6)^5 = x^{30} = x^{24+6} = x^6$ so for any x, x^6 belongs to \mathbb{F}_5^{\times} . Its is surjective, since $\alpha^6 = 2$ which spans $(\mathbb{F}_5^{\times}, \times)$. We deduce that N is a 6 – 1 map.
- 3. Rewrite the defining equation as $y^2 1 = x^6$. We need that $\sigma = y^2 1$ belongs \mathbb{F}_5 , in which case we have the following possibilities.

So we have $2 \cdot 1 + 2 \cdot 6 + 2 \cdot 6 + 2 \cdot 6 + 1 \cdot 6 = 44$ points.

4. We need to give a basis of $\mathbb{F}_{25}[x,y]/\langle y^2 - x^6 - 1 \rangle$. Using a Euclidean division or the theorem of the course, it's enough to consider only the following monomials.

$$
\Gamma_{<6} = \langle 1, y, y^2, y^3, y^4, y^5, x, xy, xy^2, xy^3, xy^4, x^2, x^2y, x^2y^2, x^2y^3, x^3, x^3y, x^3y^2, x^4, x^4y, x^5 \rangle
$$

\n
$$
\Gamma_{<7} = \langle \Gamma_{<6}, y^6, xy^5, x^2y^4, x^3y^3, x^4y^2, x^5y \rangle
$$

\n
$$
\Gamma_{<8} = \langle \Gamma_{<7}, y^7, xy^6, x^2y^5, x^3y^4, x^4y^3, x^5y^2 \rangle
$$

5. We use the AG codes obtained by evaluating the functions of $\Gamma_{\leq m}$ on the 44 points of the curve $(m = 6, 7, 8)$. Bezout theorem ensures that the minimal distance is at least $44 - 6(m - 1)$ which agrees with the question. The dimension of the codes can be directly computed from the last question.

Problem 4 [12 points].

- 1. How many binary cyclic codes of length 7 are there?
- 2. Let C_1 and C_2 be the binary cyclic codes of length 7 with generator polynomials $g_1(x)$ = $x-1$ and $g_2(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$, respectively. What are their parameters?
- 3. Consider C, the binary cyclic code of length 7 generated by the polynomial $g(x)$ = $x^4 + x^3 + x^2 + 1$. What are its parameters?
- 4. A burst error of length t is an error of weight t on t consecutive positions. Show that C can correct all burst errors of length 2.

Solution :

1. $x^7 - 1$ can be factored into irreducible factors as

$$
x^{7} - 1 = (x - 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1).
$$

For each irreducible factor, we have two choices (to take it or not to take it as a factor of the generator polynomial), hence there are 8 binary cyclic codes of length 7.

- 2. C_1 with generator polynomial $g_1(x) = x 1$ has dimension 6 and minimum distance 2. In fact, it is the code containing all words of even weight. C_2 with generator $g_2(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ has dimension 1. In fact, it contains only the all-zero and all-one words and has distance 7.
- 3. C is a [7, 3, d]-code. We know that $d \leq 4$ since C contains the word 00011101 corresponding to $g(x)$. To see that $d = 4$, note that $g(x) = (x - 1)(x^3 + x + 1)$. Let ω be a root of $x^3 + x + 1$. It is easy to check that ω is a primitive 7-th root of unity. Then we have that $g(1) = g(\omega) = g(\omega^2) = 0$ so that $d = 4$ by the BCH bound. Alternatively, note that C contains the codeword 00011101 and all its cyclic shifts. There are 8 such distinct cyclic shifts, and C has dimension 3, so that C consists exactly of the cyclic shifts of 00011101, all of which have weight 4.
- 4. Let e_i denote the vector of length 7 consisting of 1's in the *i*th and $i + 1$ st coordinates and 0's everywhere else. C can correct all bursts of length 2 if and only if all the error vectors e_i have distinct syndromes. Let H be a check matrix of C and suppose C cannot correct all bursts of length 2; that is, there exist $i \neq j$ such that $He_i = He_j$, i.e., $H(e_i + e_j) = 0$. This means that the word $e_i + e_j$ belongs to the code. Since C has minimum distance 4, $e_i + e_j$ must have weight at least 4, so that i, $i + 1$, j and $j + 1$ are all distinct. The corresponding codeword thus has two sets of consecutive 1's; but no such codeword can exist, since all codewords are cyclic shifts of 00011101.

Problem 5 [20 points]. Let C be an (n, M, d) binary code. The Hamming distance between a vector $y \in \mathbb{F}_2^n$ and C, denoted by $d(y, C)$, is the smallest Hamming distance between y and a codeword in C , *i.e.*,

$$
d(y, C) = \min_{c \in C} d(y, c).
$$

The covering radius r of C is the largest distance from C to any vector y in \mathbb{F}_2^n , *i.e.*,

$$
r = \max_{y \in \mathbb{F}_2^n} d(y, C).
$$

- 1. Find the covering radii of the binary repetition code and the binary Hamming code of length $2^{\ell} - 1$.
- 2. Show that

$$
M \cdot V_2(n,r) \ge 2^n,
$$

where $V_2(n,r)$ denotes the volume of a Hamming ball of radius r in \mathbb{F}_2^n .

- 3. Show that a binary perfect code has an odd minimum distance.
- 4. Show that $r \geq (d-1)/2$ with equality if and only if C is perfect.
- 5. A code is called maximal if and only if the addition of any new codeword to it reduces its minimum distance. Show that if C is maximal then $r < d$.
- 6. A coset of C defined by the vector $y \in \mathbb{F}_2^n$ is the set $y + C = \{y + c | c \in C\}$. A coset leader is a minimal weight codeword in a coset. Show that if C is a linear $[n, k, d]_2$ code, then r is the largest among the Hamming weights of the coset leaders of C in \mathbb{F}_2^n .

Solution :

1. The repetition code consists of the all-zero and the all-one codewords. In this case it is easy to see that the covering radius is $\lfloor n/2 \rfloor$.

Consider an $[n = 2^{\ell} - 1, k = 2^{\ell} - \ell - 1, 3]_2$ -Hamming code. Since it has minimum distance 3, the spheres of radius 1 centered around the codewords are disjoint. Each sphere of radius 1 contains $n + 1 = 2^{\ell}$ vectors of \mathbb{F}_2^n . There are $2^k = 2^{2^{\ell} - \ell - 1}$ such spheres, so that the spheres cover $2^{\ell}2^{2^{\ell}-\ell-1} = 2^{2^{\ell}-1} = 2^n$ vectors. The spheres of radius 1 centered around the codewords thus cover the whole space \mathbb{F}_2^n . Therefore any word in the space falls in one of these spheres, so that the covering radius of the Hamming code is 1.

- 2. By definition of the covering radius, the balls of radius r around the codewords cover the space \mathbb{F}_2^n (with possibly some overlaps). The bound follows.
- 3. If C is perfect, then the balls of radius $|(d 1)/2|$ centered around the codwords cover the space \mathbb{F}_2^n . Suppose d was even. Take two codewords c_1 , c_2 such that $d(c_1, c_2) = d$ and let B_1, B_2 be the balls of radius $\lfloor (d - 1)/2 \rfloor$ centered around c_1 and c_2 respectively. Let y be such that y is exactly at distance $d/2$ from both c_1 and c_2 . Then y belongs

neither to B_1 nor to B_2 . It cannot belong either to any other ball B_3 centered around some c₃, since then y would be at distance $d/2$ from c₁ and $\leq |(d-1)/2| < d/2$ from c₃, thus violating the minimum distance property stating that $d(c_1, c_3) \geq d$. y is thus not contained in any of the balls centered around the codewords, a contradiction.

4. Consider the (disjoint) balls of radius $\frac{d-1}{2}$ $\frac{-1}{2}$ around the codewords. If they don't cover the space, there exists a vector y that does not belong to any of the balls, i.e., $d(y, C) > \lfloor \frac{d-1}{2} \rfloor$ $\frac{-1}{2}$, hence $r > \lfloor \frac{d-1}{2} \rfloor$ $\frac{-1}{2}$. It is easy to check that whether d is odd or even, this implies that $r > \frac{d-1}{2}$.

Now consider the case where the disjoint balls of radius $\frac{d-1}{2}$ $\frac{-1}{2}$ centered around the codewords cover the space, i.e., C is a perfect code and $\frac{d-1}{2} = \lfloor \frac{d-1}{2} \rfloor$ $\frac{-1}{2}$ is an integer. In this case, $r \leq \frac{d-1}{2}$ $\frac{-1}{2}$. To prove equality, it is enough to exhibit any y such that $d(y, C) = \frac{d-1}{2}$. For this, take any y at distance exactly $\frac{d-1}{2}$ from some codeword c. y cannot be closer to any other codeword c' by the minimum distance property. Hence $d(y, C) = \frac{d-1}{2}$ and thus $r = \frac{d-1}{2}$ $\frac{-1}{2}$. Conversely, suppose $r = \frac{d-1}{2}$ $\frac{-1}{2}$. Then by definition, the balls of radius $\frac{d-1}{2}$ centered around the codewords cover the space so that C is perfect.

- 5. C is maximal if and only if for any vector y in $\mathbb{F}_2^n \backslash C$, there exists a codeword c of C such that $d(c, y) < d$. This means that for all y in $\mathbb{F}_2^n \backslash C$, $d(y, C) < d$. Since for all $c \in C$, $d(c, C) = 0$, we have that for all y in \mathbb{F}_2^n , $d(y, C) < d$ and thus $r < d$.
- 6. For a given y, the weights of the elements of the coset $y + C$ are the distances of y to all the codewords of the code C. The coset leader of this coset is exactly $d(y, C)$. Therefore $r = \max_{y \in \mathbb{F}_2^n} d(y, C)$ is exactly the maximum weight of a coset leader.

Problem 6 [20 points]. Let $n = 2k$ and consider the field \mathbb{F}_{2^k} . We identify \mathbb{F}_{2^k} as a \mathbb{F}_2 -vector space with \mathbb{F}_2^k . We construct the following family of codes: for each $\alpha \in \mathbb{F}_{2^k}$, let

$$
C_{\alpha} = \{(x, \alpha x) | x \in \mathbb{F}_{2^k}\}.
$$

Here $(x, \alpha x)$ denotes the *n*-bit vector obtained when viewing x and αx as elements of \mathbb{F}_2^k .

- 1. Show that the C_{α} 's are linear codes of rate 1/2. How many such codes are there?
- 2. Show that for $\alpha \neq \beta$, $C_{\alpha} \cap C_{\beta} = \{0\}.$
- 3. Let $d(C_{\alpha})$ denote the minimum distance of C_{α} and $V(n, d)$ denote the volume of the ball of radius d in \mathbb{F}_2^n . For $\varepsilon > 0$, show that if d satisfies

$$
\frac{1}{\varepsilon}V(n,d) \le 2^k,
$$

then at most $\varepsilon 2^k$ codes among the C_{α} 's verify $d(C_{\alpha}) \leq d$.

(Hint: bound the number of "bad" C_{α} 's by considering their intersections with $B_n(0, d)$, the ball of radius d centered at (0.1)

4. Prove that for all $\varepsilon > 0$, there exist an n_0 such that for any even $n \geq n_0$, all but an ε -fraction of the codes C_{α} defined as above are $[n, \frac{n}{2}, \geq (H^{-1}(1/2) - \varepsilon)n]_2$ -codes.

Solution :

- 1. Clearly, for any α , $0 \in C_{\alpha}$ and corresponds to the choice $x = 0$. Moreover, for two codewords $(x, \alpha x)$ and $(y, \alpha y)$, we have that $(x, \alpha x) + (y, \alpha y) = (x + y, \alpha (x + y)) \in C_{\alpha}$ by linearity of addition in \mathbb{F}_{2^k} . Hence the C_{α} are linear codes of size 2^k , i.e., of dimension k, which corresponds to a rate of $k/n = 1/2$. There are 2^k such codes.
- 2. Suppose that for some α and β , there exists a nonzero codeword in the intersection $C_{\alpha} \cap C_{\beta}$. Then this codeword must be of the form $(x, \alpha x) = (x, \beta x)$. In addition, $x \neq 0$ (since otherwise $(x, \alpha x)$ is the zero codeword). Hence from $\alpha x = \beta x$, we get that $\alpha = \beta$.
- 3. If C_{α} is such that $d(C_{\alpha}) \leq d$, then $C_{\alpha} \cap B_n(0,d)$ contains at least one nonzero element. But we know that the C_{α} 's are disjoint, so that no more than $|B_n(0, d)| = V(n, d)$ of them can intersect with $B_n(0, d)$. Therefore,

$$
\sharp \{C_{\alpha}: d(C_{\alpha}) \leq d\} \leq V(n, d).
$$

If d is such that $\frac{1}{\varepsilon}V(n,d) \leq 2^k$, then

$$
\sharp \{C_{\alpha}: d(C_{\alpha}) \leq d\} \leq \varepsilon 2^{k}.
$$

4. Given any $\varepsilon > 0$, we want to choose d as large as possible such that $V(n, d)/2^k \leq \varepsilon$. We use the fact that $V(n,d) = 2^{nH(d/n)+o(n)}$ to get the following requirement on d:

$$
2^{n(H(d/n)-1/2)+o(n)} \leq \varepsilon.
$$

Asymptotically, it is enough to have $H(d/n) - 1/2 < 0$ for $2^{n(H(d/n)-1/2)+o(n)}$ to be as small as we want for n large enough. Thus d should be such that

$$
d/n < H^{-1}(1/2).
$$

In particular, if d is such that

$$
d \ge (H^{-1}(1/2) - \varepsilon)n,
$$

we know from part 3 that at most an ε -fraction of the C_{α} 's are such that $d(C_{\alpha}) \leq d$. The other C_{α} 's are $[n, \frac{n}{2}, \geq (H^{-1}(1/2) - \varepsilon)n]_2$ -codes. These are codes of rate $r = 1/2$ and relative minimum distance δ such that

$$
H^{-1}(r) - \varepsilon \le \delta < H^{-1}(r).
$$

Since the entropy function is increasing on $[0, 1/2]$, we have that

$$
H(\delta) \ge r - \varepsilon'
$$

and thus

$$
r \ge 1 - H(\delta) + \varepsilon'
$$

for ε' as small as we want.