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Solutions 1

Exercise 1.1. Let G := (Ik|G1) be a generator matrix of a linear k-dimensional code of length
n over Fq. Thus (x, y) ∈ Fk

q×Fn−k
q is a codeword iff y = xG1, or in other words, y>−G>1 x = 0.

Thus, H := (−G>1 |In−k) is a parity check matrix for the code.

Exercise 1.2. No. A counterexample over F2 would be given by

G := H :=
(

1 0 1 0
0 1 0 1

)
.

It immediately follows by the previous exercise that H is a parity check matrix for the code
generated by G. This is an example of a self-dual code, a code which coincides with its dual.

Another counterexample over F2 is the following: let

G :=
(
1 1 1 1

)
.

The code is thus the repetition code of length 4. A possible check matrix for it is

H :=

1 1 0 0
1 0 1 0
1 0 0 1

 .

(This is the generator matrix of the dual code, the parity code). It is easy to check that the
corresponding matrix (

G
H

)
is not invertible, as its rows are not linearly independent.

Exercise 1.3. C is a k-dimensional subspace of Fn
2 . Choosing a generator matrix G for C

amounts to choosing a basis of the subspace. Let us construct such a basis, picking the
vectors one by one. For the first vector v1, we have 2k − 1 choices, as v1 can be chosen to
be any nonzero vector in the subspace C. The second vector v2 can be any vector in C not
contained in the span of v1. There are 2k − 2 choices. In general, the ith vector vi can be any
vector in C\span(v1, . . . , vi−1); there are thus 2k − 2i−1 choices for vi. The number of distinct
generator matrices for C is thus

k∏
i=1

(2k − 2i−1) = 2(k
2)

k∏
i=1

(2i − 1).

Exercise 1.4. Let C be a code of dimension k over Fn
2 . Define the linear form

φ : C → F2

x 7→ Σixi
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The set Ce of even-weight codewords is the kernel of φ and is thus a subspace of C. Either
Ce is equal to the whole space C, or φ is surjective. In the latter case,

|Ce| = |Kerφ| = |C|/|F2| = |C|/2,

and Ce is thus a subspace of dimension k − 1.

Exercise 1.5.

1. Suppose that x = (x1, . . . , x10) is a codeword and an error occurs at position i. Denote
the new word by x′ = (x′1, . . . , x

′
10), which is identical to x except that at position i it

contains x′i, for some x′i 6= xi mod 11. Then we need to show that x′ is not a codeword.
Indeed,

10∑
i=1

ix′i =
10∑
i=1

ixi + i(x′i − xi) 6= 0 mod 11.

2. Suppose that the codeword is transposed at positions i and i+ 1, and again denote the
corrupted word by x’. Then

10∑
i=1

ix′i =
10∑
i=1

ixi − ixi − (i+ 1)xi+1 + (i+ 1)xi + ixi+1 = xi − xi+1 mod 11,

which is zero iff xi = xi+1, in which case no error has occurred.

3. The distance is at least two by the fact that the code can detect a single error. Moreover,
notice that the all-zero vector and (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) are codewords. Thus the
minimum distance is exactly two.

4. The code could still detect a single error by the same argument as before, but obviously
not any transpositions because the new rule is symmetric with respect to all coordinate
positions.
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