
Introduction to Coding Theory - Spring 2011 Solutions 11

Solutions 11

Exercise 11.1.

1. We can apply Eisenstein criterion with p(x) = x. We check that p(x)|x, p(x)|x3 but
p2(x) - x and p - 1.

2. The polynomial α3 + α + 1 does not possess any root over F2. Since it has degree 3,
it is irreducible as any decomposition would contain a degree 1 factor. Thus α allows
us to define a degree 3 extension, i.e the field F8 = F2[α]. Besides let ω be such that
ω2 + ω + 1 = 0. We have as usual F4 = F2[ω]. Caveat : F4 is never a subfield of
F8. In general Fpk ⊂ Fpk′ if and only if k divides k′. Now we explore case by case the
number of points by fixing the value of x. Note that it is not necessary to try to solve all
equation involved. You can use the Frobenius to reduce the number of computation.
You can also observe that if (a, b) is a point on the curve, then (b−1, a/b) and (b/a, a−1)
are also points on the curve (if defined).

x F2 F4 F8

0 0 0 0
1 ∅ ∅ α, α2, α4

ω ω2

α 1, α, α6

α−1 α3, α4, α6

So we get |K4(F2)| = 1, K4(F4) = 1 + 2 · 1 = 3 and |K4(F8)| = 1 + 3 + 3 · 3 + 3 · 3 = 22.

3. To apply the theorems seen during the lecture, we need to change a bit the defining
polynomial f in order to have a polynomial of the form x4 + f1(x, y) where the partial
degree of f1 is ≤ 3. This can be achieved by replacing y by x + y, since f(x, x + y) =
x4 + (y + 1)x3 + x2y + (y2 + 1)x + y3 . This only changes the expression of the point
of curve but not the parametres that we obtain. We consider the codes C(K4(F8),m)
for 4 ≤ m ≤ 6 that yield [22, 4m − 6,≥ 26 − 4m]8-codes as wanted. The table on the
Internet shows that best known [22, 10]8-code has minimum distance 10, best known
[22, 14]8-code distance 7 and best known [22, 14]8-code distance 2.

Exercise 11.2.

1. We notice that x9 + 1 has 1 as simple root and that x + 1 is an irreducible polynomial
that does not divide 1. So by Eisenstein criterion, f is irreducible.

2. One can simply check that 3 divides 6 or recall that F8 is the set of roots of x8−x in any
extension of F2. Now, F×64 is a group of order 63 so it contains all 7-th roots of 1. We
note that x 7→ x9 is a multiplicative group homomorphism on F×8 . Its kernel is the set of
9th roots of unity. Since F×8 has order 7, F8 does not contain any such root except 1, so
the map is an isomorphism of F×8 . It is clear that it is remains a bijection on F8. On the
other hand, on F×64, x 7→ x9 has a kernel of cardinality 9, namely {α7i, 0 ≤ i ≤ 8}where
α is a primitive element of F64. Besides, its image is in the set of the 7th root of unity,
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ie F×8 ⊆ F×64. Now, for cardinality reason, the morphism must be an epimorphism. So
we have a 9− 1 map onto F×8 .

3. On F2, there are two points (0, 1) and (1, 0). On F8, for any choice of x there is exactly
a choice of y, because of the bijection property. So |F9(F8)| = 8. Now on F64, either
x is one of the nine 9th roots of unity and y is 0 or x is one of the 55 non-9th root of
unity, and y can take 9 values. In total we have |F9(F64)| = 9 + 55 · 9 = 504 values.
Weil bounds shows that any way −383 ≤ |F9(F64)| ≤ 513. Now actually Weil bound
applies projective curves, this curve is maximal if you consider the projective curve
associated with it : consider the homogenised equation z9f(x/z, y/z) = x9 + y9 + z9

and count the number of non zero solutions up to homothety. You will find the 504
affine points that we have already (with z = 1) and 9 additionnal points (with z = 0).
So there are 513 projective points on the curve which matches with Weil bound.

Exercise 11.3.

1. We want to find the number of points (x, y, z) ∈ F3
q2 such that

zq+1 = yq + y

yq+1 = xq + x.

Recall that the map x 7→ xq + x is the trace of Fq2 over Fq and is a surjective homomor-
phism, and that the map x 7→ xq+1 is the norm, which means that it maps Fq2 to Fq.
Now z can take q2 possible values, for each of which zq+1 is in Fq. The trace map being
a surjective homomorphism, we know that it maps to each value in Fq q times, so that
there are q corresponding values of y such that yq + y = zq+1. But for each such value
of y, there are again q values of x such that xq + x maps to yq+1 ∈ Fq. In total, there are
q4 common zeros of f and g.

2. Consider f(x, y) = xq+x−yq+1. The space of polynomials of degree< m in Fq2 [x, y]/(f)
can be represented by

Γ<m = Fq[x]<m ⊕ yFq[x]<m−1 ⊕ · · · ⊕ yqFq[x]<m−q

and is of dimension

dimΓ<m = (m− 1)(q + 1)− q(q − 1)
2

+ 1 = 5m− 10

for q := 4. Now consider g(x, y, z) = yq + y− zq+1. The space of polynomials of degree
< n, in Fq2 [x, y, z]/(f, g) can be represented by

Γ<n ⊕ zΓ<n−1 ⊕ · · · ⊕ zqΓ<n−q,

for n > q. This space has dimension

n∑
m=n−q

(5m− 10) = 25n− 100.
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3. We consider the curve given by f(x, y, z) = 0, g(x, y, z) = 0 and define the correspond-
ing AG code C = Imφ, where

φ : Γ<n ⊕ zΓ<n−1 ⊕ · · · ⊕ zqΓ<n−q → Fq
4

q

h 7→ (h(a, b, c) : f(a, b, c) = g(a, b, c) = 0) .

By Bézout’s theorem, we know that the number of common zeros of any h and the
curve is upper bounded by deg(h)deg(f)deg(g) < n(q+1)2 = 25n (note that h belongs
to such a space that it cannot be expressed as h = h1f + h2g for some polynomials h1

and h2, so that Bézout’s theorem can be applied).
We would like to make sure that φ is injective. For that, it is enough to impose the
condition n(q + 1)2 < q4, i.e., n ≤ 10, which ensures that for any h in the domain, φ(h)
is not all zeros. We then get the following parameters for the code:

dimC = 25n− 100
distC ≥ q4 − n(q + 1)2 = 256− 25n.

Exercise 11.4.

1. Suppose that n = 1, so that P (x1) is a univariate polynomial of degree d over Fq. Then
we know that P has at most d roots in Fq, therefore for x1 chosen uniformly at random
in Fq, we get

Pr[P (x1) = 0] ≤ d/q.

2. Now suppose that for a given n ≥ 2, for any nonzero (n − 1)-variate polynomial
P (x1, · · · , xn−1) of degree d, Pr[P (x1, · · · , xn−1) = 0] ≤ d/q when x1, · · · , xn−1 are
chosen uniformly in Fq. We want to prove that for a nonzero n-variate polynomial
P (x1, · · · , xn) of degree d, Pr[P (x1, · · · , xn) = 0] ≤ d/q when x1, · · · , xn are chosen
uniformly in Fq.
Write

P (x1, . . . , xn) =
d∑
i=0

xi1Pi(x2, . . . , xn)

=
j∑
i=0

xi1Pi(x2, . . . , xn),

where j is the largest index such that Pj(x2, . . . , xn) is not the zero polynomial. Note
that degPj + j ≤ d. We have that

Pr
x1,...,xn

[P (x1, · · · , xn) = 0] = Pr
x1,...,xn

[P (x1, · · · , xn) = 0 ∧ Pj(x2, . . . , xn) = 0]

+ Pr
x1,...,xn

[P (x1, · · · , xn) = 0 ∧ Pj(x2, . . . , xn) 6= 0].

But

Pr
x1,...,xn

[P (x1, · · · , xn) = 0 ∧ Pj(x2, . . . , xn) = 0] ≤ Pr
x2,...,xn

[Pj(x2, . . . , xn) = 0] ≤ degPj
q

,
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where we have used the induction hypothesis. Also,

Pr
x1,...,xn

[P (x1, · · · , xn) = 0 ∧ Pj(x2, . . . , xn) 6= 0] ≤

Pr
x1

[P (x1, · · · , xn) = 0|x2, . . . , xn are s.t. Pj(x2, . . . , xn) 6= 0].

But when we condition on the event thatPj(x2, . . . , xn) 6= 0, we have thatP (x1, · · · , xn) =∑j
i=0 x

i
1Pi(x2, . . . , xn) is a nonzero degree-j univariate polynonomial in x1. We can

now apply the result from part 1 and deduce that the probability that such a polyno-
mial evaluates to 0 is upper-bounded by j/q.
We thus have that

Pr[P (x1, · · · , xn) = 0] ≤ degPj + j

q
≤ d/q,

which completes the induction step.

3. By definition,

Pr[P (x1, · · · , xn) = 0] =
] roots (a1, . . . , an) of P

qn
.

Putting this together with the result of part 2, we conclude that the number of roots
(a1, . . . , an) of P over Fq is less than or equal to dqn−1.

Note that we could consider the alternative problem of bounding the number of roots
(a1, . . . , an) of P where all ai belong to a subset S ⊆ Fq. Then we could follow a similar
method to upper bound the number of such roots by d|S|n−1.

Exercise 11.5.

1. Write f(x, y) as
∑

i fi(y)xi. For any β ∈ I , f(x, β) =
∑

i fi(β)xi is a univariate polyno-
mial in x of degree< k, and it has at least k roots (x instantiated with all elements of I).
Hence it is identically zero, and fi(β) = 0 ∀i. Now for each such index i, we thus have
that fi(β) = 0 for all elements β of I , i.e., fi(y) has at least k roots. But it is a univariate
polynomial in y of degree< y, so that fi(y) must be identically zero. We thus have that
f(x, y) =

∑
i fi(y)xi is identically 0.

2. The code C is the image of the map

φ : Fq[x, y]<k,<k → Fq
2

q

f 7→
(
f(a, b) : (a, b) ∈ F2

q

)
We would like to show that φ is injective. Take an element f of kerφ. f is such that
it evaluates to 0 on all (a, b) ∈ F2

q . Apply part 1 with I = Fq to get that f is the zero
polynomial. Thus φ is injective and dimC = dim(Imφ) = k2.

3. Finding such a nonzero polynomialQ(x, y, z) =
`−1∑
i=0

`−1∑
j=0

t−1∑
k=0

qijkx
iyjzk amounts to find-

ing its `2t coefficients. The conditions Q(α, β, yα,β) = 0 for all α, β ∈ Fq correspond to
q2 linear equations that the {qijk} must satisfy. As long as `2t > q2, this linear system
has a nontrivial solution.
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