
Introduction to Coding Theory - Spring 2010 Solutions 2

Solutions 2

Exercise 2.1. Let C be the linear code generated by c. We are looking for the number of
weight w words in C⊥, which is the coefficient of xwyn−w in the weight enumerator of C⊥.
The weight enumerator of C can be written as

W (x, y) = yn + xdyn−d,

and by MacWilliams identities, the weight enumerator of C⊥ is given by

W ′(x, y) =
1
|C|
W (y − x, y + x) =

1
2
((y + x)n + (y − x)d(y + x)n−d).

The quantity we are looking for is the coefficient of xwyn−w in the expansion of 1
2((1 + x)n +

(1− x)d(1 + x)n−d), which is

1
2

(n
w

)
+

min{d,w}∑
i=0

(−1)i

(
d

i

)(
n− d
w − i

) .

Exercise 2.2.

1. Puncturing. Note that Ci is the image of the projection

π : C → Fn−1
q

x = (x1, . . . , xn) 7→ (x1, . . . , xi−1, xi+1, . . . , xn)

and is thus a subspace of Fn−1
q . Ci is a linear code with the following parameters:

• The length of Ci is n− 1.

• The dimension of Ci remains k, unless the original code C contains the codeword
ei = (0 · · · 10 · · · 0) which has a 1 only at coordinate i.

• If there is a codeword ofC of weight dwith a 1 at position i, the minimum distance
of Ci is d− 1. Otherwise, the minimum distance of Ci is d.

2. Shortening. Similarly to above, we see that Ci is the image of the projection of the
subspace C ′ on Fn−1

q and is thus a subspace of Fn−1
q . Its parameters are as follows:

• The length of Ci is n− 1.

• If all codewords of C have a 0 at position i, the dimension of Ci (and of C ′) is k.
Otherwise, the dimension is k − 1.

• Since C ′ is a subcode of C, its minimum distance is at least d. All codewords of C ′

have a zero at position i, so that the minimum distance of Ci is at least d.
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3. On one hand, if a length-(n− 1) vector (y1 · · · yi−1yi+1 · · · yn) belongs to (Ci)⊥, then by
definition, for each x = (x1 · · ·xi−1xi+1 · · ·xn) in Ci, we have

∑
j 6=i xjyj = 0, which

implies that the length-n vector (y1 · · · yi−10yi+1 · · · yn) belongs to C⊥, so that

(y1 · · · yi−1yi+1 · · · yn) ∈ (C⊥)i.

On the other hand, if (y1 · · · yi−1yi+1 · · · yn) ∈ (C⊥)i, then (y1 · · · yi−1yi+1 · · · yn) is the
punctured version of a vector (y1 · · · yi−10yi+1 · · · yn) in C⊥, that is, a vector (y1 · · · yn)
which satisfies

∑
xjyj = 0 and yi = 0. This implies that

∑
j 6=i xjyj = 0, i.e., that

(y1 · · · yi−1yi+1 · · · yn) ∈ (Ci)⊥.

Exercise 2.3.

1. Let H be the [7, 4, 3]2-Hamming code and H′ be the extended Hamming code. Clearly,
H′ has length 8. Further, it is easy to check that H′ is a subspace of F8

2 and that it is
isomorphic to H. Thus the dimension of H′ is 4. To see that the minimum distance of
H′ is 4, first note that the minimum distance of H′ cannot be less than that of H. Now
there exists a codeword x of H of weight 3. Since the weight of x is odd, x has parity
1, so that the codeword (x,

∑
xi) of H′ is of weight 4. Moreover, if there was a code-

word (x,
∑
xi) of H′ of weight 3, its 8th entry must be a 1 (otherwise by the argument

above the weight of (x,
∑
xi) would be 4) so that the corresponding H-codeword x is

of weight 2; but this is impossible.

In general, adding a parity check to a code with check matrix H results in a code with
check matrix 

0

H
...
0

1 1 · · · 1


A check matrix forH′ is thus


1 0 1 1 1 0 0 0
1 1 0 1 0 1 0 0
0 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1

 .

We can also replace the last check by a linear combination of all checks, thus getting a
check matrix

H ′ :=


1 0 1 1 1 0 0 0
1 1 0 1 0 1 0 0
0 1 1 1 0 0 1 0
1 1 1 0 0 0 0 1

 .

This check matrix contains the identity matrix of dimension 4 as a submatrix (we say
that H ′ is in “systematic form”). It is now easy to get a generator matrix for H′ using
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the technique of Exercise 1 of Exercise Sheet 2. Thus a generator matrix for H′ would
be

G′ :=


1 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1
0 0 0 1 1 1 1 0

 .

2. It is easy to verify (by Gaussian elimination) that G′ can be transformed into H ′ using
elementary row operations. Thus the extended Hamming code is self-dual.

Exercise 2.4. Consider an [n = 2r−1, k = 2r−r−1, 3]2-Hamming code. Since it has minimum
distance 3, the spheres of radius 1 centered around the codewords are disjoint. Each sphere
of radius 1 contains n + 1 = 2r vectors of Fn

2 . There are 2k = 22r−r−1 such spheres, so that
the spheres cover 2r22r−r−1 = 22r−1 = 2n vectors. The spheres of radius 1 centered around
the codewords thus cover the whole space Fn

2 .

Exercise 2.5. Given integers N ≤ n, K ≥ k, and D ≥ d, we show that if there exists a
[N,K,D]q-code, then we can construct a [n, k, d]q-code. Appending n − N 0s to the end
of every codeword gives us an [n,K,D]q-code. We can form a new code of any desired
dimension less than or equal to K by taking a subcode. In particular, we can take a subcode
of dimension k. This is an [n, k,D′]q-code with D′ ≥ D ≥ d. As long as the distance of the
code is strictly greater than d, we do the following: pick a coordinate i where a minimum-
weight codeword has a 1 and set the ith coordinate of every codeword to 0. This reduces
the minimum distance by 1. To see that this operation does not affect the dimension, note
that the only way to reduce the dimension with this operation is if there existed a codeword
whose only nonzero entry is at position i. But this is impossible since our code has distance
strictly greater than d (hence strictly greater than 1).

Exercise 2.6. For the “if” part, suppose that there is a (n+1, k, d+1)2-code. Take a codeword
x of weight d + 1 with a one at some position, say the i-th. Then remove the ith coordinate
from all the codewords, to obtain a new code of length n, which obviously has distance at
least d. Indeed the distance of the new code is exactly d as x correponds to a codeword in
the new code of weight exactly d.

For the “only if” part, let C be a (n, k, d)-code. Extend the code by adding one coordinate,
where each codeword (x1, . . . , xn) ∈ Fn

2 is replaced by (x1, . . . , xn, x1 + · · ·+xn) ∈ Fn+1
2 . The

new code has the same number of codewords, and its distance is either d or d + 1. Take a
codewords x in the original code whose Hamming weight is d. As d is odd, the extension of
x has a one in the last position ; thus, the minimum distance of the extended code is indeed
d+ 1.

Exercise 2.7. By the previous exercise, there is a one-to-one correspondence between (n, k, 2)2
codes and (n− 1, k, 1)2 codes. Thus, A2(n, 2) = A2(n− 1, 1), where the latter quantity is ob-
viously n− 1.

Exercise 2.8.

1. LetG ∈ Fk×n
2 be a generator matrix for C. For J ⊆ [n], denote byGJ the submatrix ofG

obtained by removing the columns picked by J . Similarly, for a vector x ∈ Fn
2 , denote
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by xJ the vector obtained from x by removing the coordinates chosen by J .

Suppose that for every J ⊆ [n] of size i, GJ has rank k. Then the minimum distance
of C has to be at least i + 1. Suppose not, and take x ∈ Fk

2 such that x 6= 0 and xG
has weight at most i. Let J of size i contain the support (the set of nonzero coordinate
positions) of xG. Then xGJ = (xG)J = 0, which contradicts the assumption that GJ

has maximal rank k.

Moreover, suppose that the minimum distance of C is d. Take some nonzero codeword
xG of Hamming weight d and let J ⊆ [n] be its support. Then GJ has a nontrivial left
kernel, as xGJ = 0; thus, GJ must have rank less than k.

We conclude that the minimum distance of C s exaclty the largest integer d such that
every k × (n− d+ 1) submatrix of its generator matrix has rank k.

2. By the previous part, every k × k submatrix of any generator matrix of an MDS code
must have full rank, and conversely, if every k × k submatrix of a generator matrix of
a code has full rank, then the code is MDS.

Moreover, as the minimum distance of an [n, k] MDS code is n − k + 1, every (n −
k)× (n− k) submatrix of a parity check matrix of such a code must have full rank (as
otherwise a nontrivial linear dependence on some n− k columns of the code and thus
a codeword of weight at most n − k must exist, contradicting the MDS assumption)
and vice versa. The claim follows by noting the fact that any generator matrix of the
code is a parity check matrix for the dual.

Exercise 2.9. Since the code C is perfect, the balls around codewords of radius t form a tiling
of the space Fn

q . So any word x ∈ Fn
q of weight t + 1 must lie in such a ball, which must be

centered in a codeword of weight between 1 and 2t + 1. Now since 0 in a codeword, there
cannot be another codeword of weight less than 2t+ 1. So any word x ∈ Fn

q of weight t+ 1
is contained in the ball around a codeword of weight 2t+ 1.

Given a codeword c of weight 2t+1, a word x of weight k+1 can be at distance≤ t only
if x is obtained from c by changing non-zero symbols to a zero. Thus there are

(
2t+1

t

)
such

words. On the other hand, there are
(

n
t+1

)
(q−1)t+1 words of weight t+1. So we have indeed

W2t+1 =

(
n

t+1

)
· (q − 1)t+1(
2t+1

t

) .

Exercise 2.10. Every coin can be in three states : of the right weight, too heavy or too light.
The balance also gives us three informations : balanced, moving to the right or moving to
the left. So it seems natural to work in the finite field F3 = {0,+1,−1}. If xi = 0 when the
i-th coin has the right weight, +1 if it is too heavy and −1 when too light, a weighting with
less than one counterfeited coin amounts to check an equation like

s = xi1 + xi2 + · · ·+ xik − xj1 − xj2 + · · · − xjk
≡ 0 mod 3

To sum up, we are looking for a code that can correct one error (because only one xi can
be non zero) given by three check equations over F3 where each equation has as many +1 as
-1 coefficients.
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Codes that can correct one error have minimum distance three. They are the Hamming
codes. The columns of the check matrix of a Hamming code are a representatives of vectors
that direct all the lines of (F3)r. Since we have 3 weightings, we take r = 3. This gives for
example  0 0 0 0 1 1 1 1 1 1 1 1 1

0 1 1 1 0 0 0 1 1 1 −1 −1 −1
1 0 1 −1 0 1 −1 0 1 −1 0 1 −1


where we wrote the columns systematically.

We have one column in excess so we remove the last one. The we try satisfy the constrains
on the number of ocurences of 1 and -1 by multiplying some columns by -1. We do that on
column 9,10,11, 12, and 3,4 to end up with 0 0 0 0 1 1 1 1 −1 −1 −1 −1

0 1 −1 −1 0 0 0 −1 1 −1 1 1
1 0 −1 1 0 1 −1 0 −1 1 0 −1


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