Solutions 3

Exercise 3.1.

1. We can take

$$
G_6 = [\mathbf{I}_3 | A] = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & \omega & \omega^2 \\ 0 & 0 & 1 & 1 & \omega^2 & \omega \end{pmatrix}.
$$

Note that A is a Vandermonde matrix. The length of \mathcal{G}_6 is 6 and dimension 3. The minimal length is at most 4, as shows the generator matrix. Let $y = xG = (x, b)$ be a codeword with $x, b \in \mathbb{F}_4^3$. If wgt $(x) = 1$, y has weight 4 ; if wgt $(x) = 2$, then wgt $(b) \ge 2$ as A has no singular 2×2 submatrix; if wgt $x = 3$, $b = 0$ would mean $x = 0$ as A is invertible. So there is no codeword of weight \leq 3 and the minimum distance is 4. We notice that this code is MDS.

- 2. For any two distinct rows x,y of G_6 , we have $x\cdot y=0+0+0+1+\omega+\omega^2=0\mod 2$ and $x \cdot x = 1 + 0 + 0 + 1 + \omega^3 + \omega^3 = 0 \mod 2$. So \mathcal{G}_6 is Hermitian self-dual.
- 3. Let C be such a code and C a generator matrix. Up to permutation, we assume that the 3 first columns are independent. Up to a change of basis, we may assume that $C = [I_3|B]$. Up to multiplication of the 3 last columns by a scalar, we assume that the first row of *B* is $(1, 1, 1)$. Now we have

$$
C = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & a & b & c \\ 0 & 0 & 1 & d & e & f \end{pmatrix}
$$

None of the letters $a, b \ldots f$ can be zero since the code has minimum weight 4. Suppose that λ is used twice among a, b, c , then $\lambda C_1 + C_2$ is a code word of weight ≤ 3 which is not possible (where C_i is the *i*th row of C). So $\{a, b, c\} = \{d, e, f\} = \{1, \omega, \omega^2\}.$ Now again, if more than two of the following occurs $a = d$, $b = e$ or $c = f$, then, by taking $C_2 + C_3$ we have a codeword of weight 3. On the other hand, if not one of these happens, def is a permutation of abc and $C_2+\omega C_3$ or $C_2+\omega^2 C_3$ would have weight 3. So, up to equivalence

$$
C = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & a & b & c \\ 0 & 0 & 1 & a & c & b \end{pmatrix}
$$

with a, b, c distinct. If a is not 1, one can divide rows 2 and 3 by a and multiply columns 2 and 3 by a. So $a = 1$. Up to permutation, we can choose $b = \omega$ and $c = \omega^2$, and we are luckily back to G_6 .

Exercise 3.2.

1. It's enough to prove that $4|{\rm wgt}(x)$ and $4|{\rm wgt}(y)$ implies that $4|{\rm wgt}(x+y)$. But wgt $(x+y)$ $y = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle y, y \rangle + 2\langle x, y \rangle = \text{wgt}(x) + \text{wgt}(y) + 2\langle x, y \rangle$. As C is self dual, $\langle x, y \rangle \equiv 0 \mod 2$ so finally $4|\text{wgt}(x + y)|$.

2. On the other hand,take x and y two codewords, then $\langle x, y \rangle = \frac{1}{2}$ $\frac{1}{2}(\langle x+y,x+y\rangle - \langle x,x\rangle + \langle y,y\rangle) \equiv$ 0 mod 2.

Exercise 3.3.

- 1. Let $(v_i)_i$ denote the row vectors of G_{24} . We check that v_1 and v_2 have even weight, $v_2 \cdot v_i = 0$. By permutation, this is enough to make sure that $v_i \cdot v_j = 0$ for any i, j . So \mathcal{G}_{24} is self-dual.
- 2. Remember from the first exercise sheet that for systematic codes $[-A, I]$ is a check matrix, but as the code is self-dual, it is also a generator matrix. Since characteristic is 2, [A, I] is indeed a generator matrix. If $(a, b) \in \mathcal{G}_{24}$, $(a, b) = b[A, I]$, but $b[I|A]$ is also a code word that is $(b, a) \in \mathcal{G}_{24}$. From previous exercise, the minimal weight of the codewords is 4 or 8. If there is a word (a, b) of weigth 4, we can assume that wgta \leq wgtb. The case wgta = 0 or 1 are excluded by looking at A. Now if wgta = wgtb = 2, the codeword is the sum of two rows of G_{24} which never have weight 4. So the minimal distance is 8.
- 3. One can puncture the code \mathcal{G}_{24} to obtain $[23, 12, 7]_2$ -code.

Exercise 3.4.

- 1. If G_1 has rank below $k-1$, then it must be that for some nonzero $c_1 \in \mathbb{F}_q^{k-1}$, $c_1G_1 = 0$. Now let $c := (0 \mid c_1)G$, which is nonzero (as G has rank k) and has all-zeros on its first $n - d$ coordinates. Suppose that one of the nonzero entries of c is $\alpha \in \mathbb{F}_q$, and observe that ($-\alpha \mid c_1$) must have weight less than d. This contradicts the assumption that C has minimum distance d.
- 2. Let G'_1 be the submatrix of G formed by removing its last d columns. This submatrix has rank equal to the rank of G_1 , which is $k-1$. Thus the number of solutions for the linear equation $xG_1' = c_1$ is exactly q, and this is the number of the choices of c_2 that we are looking for.

For the second part, let the unique nonzero choice of $x\in \mathbb{F}_q^{k-1}$ be such that $xG_1=c_1.$ If xG_2 has weight at most $d - \lfloor d/q \rfloor$ then we are done. Otherwise, the number of zeros in xG_2 is strictly less than $\lceil d/q \rceil$, and thus there is an $\alpha \mathbb{F}_q$ such that the number of α 's in xG_2 is at least $\lceil d/q \rceil$ (as otherwise the length of xG_2 won't reach d). Then $(-\alpha \mid x)G$ must be the codeword of C with the desired properties.

3. Suppose for the sake of contradiction that there is a nonzero $x\in \mathbb{F}_q^{k-1}$ such that $c_1:=$ xG_1 has weight less than $\lceil d/q \rceil$. Then use the result obtained in the previous part to complete c_1 to a codeword $(c_1 | c_2)$ of C such that c_2 has weight at most $d-[d/q]$. Thus the weight of $(c_1 | c_2)$ would be less than d, which is a contradiction.

Exercise 3.5.

1. Suppose that there is a code C of length smaller than $d + N_q(k-1, \lceil d/q \rceil)$. Then C has a generator matrix of the form given in the previous exercise, up to a permutation of the columns. By the last exercise, the matrix G_1 generates a code of dimension $k-1$, minumum distance at least $\lceil d/q \rceil$ but length less than $N_q(k-1, \lceil d/q \rceil)$, which is a contradiction.

- 2. The inequality is immediate from the previous part by induction on k . Observe that each term on the right hand side of this inequality is at least one, thus the right hand side is at least $d + (k - 1) \cdot 1$, which implies the Singleton bound.
- 3. The minimum distance of the first-order Reed-Muller code is $q^{m-1}(q-1)$, as for every *n*-variate polynomial f of degree 1 and every $\alpha \in \mathbb{F}_q$, the number of solutions x for $f(x) = \alpha$ is q^{m-1} is q^{m-1} . Pluggin $d = q^m - q^{m-1}$ on the right hand side of the bound we get that

 $N_q(k, d) \geq \lceil q^m - q^{m-1} \rceil + \lceil q^{m-1} - q^{m-2} \rceil + \cdots + \lceil q^1 - q^0 \rceil + \lceil q^0 - q^{-1} \rceil = q^m.$

So the inequality is tight for the code because the length of the code is q^m .

Exercise 3.6. A *burst of length* ℓ is the event of having errors in a codeword such that the locations i and j of the first (leftmost) and last (rightmost) errors, respectively, satisfy $j - i =$ $\ell - 1$. Let C be a linear [n, k]-code over \mathbb{F}_q that is able to correct every burst of length t or less.

- 1. Consider a codeword $c = (c_1, \ldots, c_n)$ that contradicts this assumption. Then $w =$ $(c_1, \ldots, c_{i+t-1}, 0, 0, \ldots, 0)$ can be either the zero codeword with a burst of length t at left, or c with a burst of length t at right, and is thus not uniquely correctable, a contradiction.
- 2. The proof is similar to that of the Singleton bound. Since the number of codewords is $q^k > q^{k-1}$, there must be at least two codewords that agree on their first $k-1$ coordinates, and thus, there is a nonzero codeword that has all zeros on its first $k - 1$ coordinates. Using the notation of the previous part we will have $j - i < n - k + 1$. Thus, $2t \leq n - k$ by the previous part.
- 3. The proof is similar to the classical sphere-packing bound except that the shape of the "balls" are now different. For the sphere-packing bound we had to count the number of points that are at distance t from a given point, or the "volume" of the Hamming ball of radius t around each codeword. Here instead we only need to count the number of points within such a ball that are different from the word at the center (denoted by w) by a burst of size at most t. Denote this quantity by V. We have to distinguish the following cases and add up the numbers:
	- The word w at the center.
	- Words that are different from w in only one position. The number of such words is $n(q-1)$,
	- Words that are different from w by a burst of size $i, 2 \leq i \leq t$. The number of such words is $(n-i+1)(q-1)^2 q^{i-2}$.

Altogether, we will have

$$
V = 1 + n(q - 1) + (q - 1)^{2} \sum_{i=0}^{t-2} (n - i - 1)q^{i},
$$

and similar to the sphere-packing bound, the "spheres" must be disjoint so that q^k \leq q^n/V . The bound follows.