
Introduction to Coding Theory - Spring 2011 Solutions 6

Solutions 6

Exercise 6.1.

1. We first observe that m(x) = xn−ku(x) − b(x) is divisible by g(x) so m belongs to C.
We see also that xn−ku(x) amounts to shift the bits of u to the rightmost positions in m,
besides b(x) has degree < deg g = n−k. So the bits of b are zeros on the last k positions
and do not interfer with xn−ku(x).

2. Let us denote β(j)(x) the content of the registers at step j. At step 1, the registers con-
tain β(1)(x) = uk−1g(x). Now to go to from a step j−1 to the step j, every bit is shifted
to the right, which amounts to multiply β(x) by x, and the last bit, corresponding to
βn−k−1x

n−k−1 give rise to an additional βn−k−1(g0 + · · · + gn−k−1x
n−k−1). In other

words, the feedback loops amounts to reduce mod xn−k − (g0 + · · · + gn−k−1x
n−k−1).

On the other hand, we input uk−j(g0 + · · ·+ gn−k−1x
n−k−1) at step j, so the register be-

comes β(j)(x) = xβ(j−1)(x)+uk−jx
n−k mod g(x). So by induction, β(k)(x) = xn−ku(x)

mod g(x) = b(x) as claimed.

3. Let v = (v0, . . . , vn−1) be a codeword. We know that the check equations of the code
can be written in terms of the coefficients of h as

∑k
i=0 hivn−i−j = 0 (see last exercise

sheet). Thus, since hk = 1,

∀1 ≤ j ≤ n− k, vn−k−j =
k−1∑
i=0

hivn−i−j

which is exactly what the circuit computes.

4. Using g(x) = x3 + x + 1 requires 3 registers and 2 xors. Using h(x) = 1 + x + x2 + x4

requires 4 registers and 2 xors. Notice on F2, multiplication by 0 mean that there is no
connection, while multiplication by 1 mean that there is a connection.

5. We use a circuit that is analogous to the first one. This time, the entry is on the left.

s0 s1 s2 sn−k−1

g1 g2 g3 gn−k−1

r(x)

Exercise 6.2.

1. We must have ω13 = 1 and ωr 6= 1 for every r < 13. In particular, ω must be a root of
x13 − 1 that lives in the smallest splitting field of this polynomial. Let q := 3, n := 13
and consider the smallest integer m such that n divides qm − 1. For our choices, we
will have m = 3. The degree of the smallest splitting field of xn − 1 must be m (i.e., 3),
as we need xn − 1 divide xqm−1 − 1 but not xqs−1 − 1 for any s < m.

1



Introduction to Coding Theory - Spring 2011 Solutions 6

2. First we note that for every α, the minimal polynomial of α and α3 are the same over
F3. So the minimal polynomial of the elements on each of the following lines are the
same:

ω0 = 1
ω, ω3, ω9, ω27 = ω

ω2, ω6, ω18 = ω5, ω15 = ω2

ω4, ω12, ω36 = ω10, ω30 = ω4

ω7, ω21 = ω8, ω24 = ω11, ω33 = ω7

So we only need to list g0, g1, g2, g4, g7. Each one of these is the minimial polynomial of
the powers of ω indicated below:

g0 : 0
g1 : 1, 3, 9
g2 : 2, 5, 6
g4 : 4, 10, 12
g7 : 7, 8, 11

In particular the degrees of g0, g1, g2, g4, g7 are 1, 3, 3, 3, 3, respectively. As the dimen-
sion of the code needs to be 6, the generator polynomial of the code must pick two
minimal polynomials of degree 3 and the one with degree 1. Moreover, as the distance
of the code needs to be 2 ∗ 2 + 1 = 5, we can in particular pick g0, g1, g2 so as to have
ω0, ω1, ω2, ω3 as roots of the generator polynomial, and thus, achieve a distance of 5
by the BCH bound. Thus, letting g(x) denote the generator polynomial, we will have
g(x) = g0(x)g1(x)g2(x).

3. Let E(x) := x3 + a2x
2 + a1x + a0. If E(x) is reducible then it must have a factor of

degree 1, i.e., either x, x − 1, or x + 1. We want to eliminate these possibilities. We
can ensure that x is not a factor by letting a0 6= 0. If x − 1 is a factor of E(x), then
we must have E(1) = 0, i.e., 1 + a0 + a1 + a2 = 0. Similarly, if x + 1 is a factor of
E(x), we must have a0 + a2 = 1 + a1. We can ensure these conditions hold by letting
a0 := 1, a1 := −1, a2 := 0, and obtain E(x) = x3 − x+ 1, which is irreducible over F3.

4. The element α is a primitive element of F33 , and thus it is a primitive 26th root of unity.
As ω must be a primitive 13th root of unity, we can take ω := α2. Now we take α as a
root of the polynomial E(x) above. The table below shows various powers of α, and
confirms that α has order 26:

2



Introduction to Coding Theory - Spring 2011 Solutions 6

i αi

0 1
1 α

2 α2

3 α− 1
4 α2 − α
5 −α2 + α− 1
6 α2 + α+ 1
7 α2 − α− 1
8 −α2 − 1
9 α+ 1
10 α2 + α

11 α2 + α− 1
12 α2 − 1
13 −1

13 + j −αj

Thus, we can write the minimal polynomials as follows:

g0 = (x− α0) = x− 1
g1 = (x− α2)(x− α6)(x− α18) = x3 + x2 + x− 1
g2 = (x− α4)(x− α12)(x− α10) = x3 + x2 − 1

g4 = (x− α8)(x− α24)(x− α20) = x3 − x2 − x− 1
g7 = (x− α14)(x− α16)(x− α22) = x3 − x− 1

5. Using the previous parts, we can conclude that the code is generated by

g(x) = g0(x)g1(x)g2(x) = (x−1)(x3 +x2 +x−1)(x3 +x2−1) = x7 +x6−x3 +x2−x−1.

6. Let y = (y0, . . . , y12) and y(x) :=
∑

i yix
i so we have y(x) = −x+ x5, and consider the

error-locating polynomial e(x) = a1x
i1 +a2x

i2 where i1 and i2 are the error positions and
a1 and a2 are error values. Let X := ωi1 and Y := ωi2 , so we want to know X and Y .
We have that y(x) = e(x) for x = ωi, i = 0, 1, 2, 3, 5, 6, 9. So

S0 := y(ω0) = a1 + a2 = 0⇒ a1 = −a2.

S1 := a1(X − Y ) = y(ω) = α10 − α2 = α.

S2 := a1(X2 − Y 2) = y(ω2) = ω10 − ω2 = −α7 − α4 = α2 − α+ 1 = −α5.

ThusX+Y = S2/S1 = −α4. We may without loss of generality assume thatX−Y = α
(if a1 = −1, this will only changed the order of X and Y ). So,

X = ((X + Y ) + (X − Y ))/2 = α2 + α = α10 = ω5,

Y = ((X + Y )− (X − Y ))/2 = −α4 − α10 = α2 = ω,

so we conclude that the errors are at positions 1 and 5. Now from S1 = a1(X−Y ) = α,
we obtain that a1 = 1, so the error value at the position corresponding to X (i.e., 5) is 1
and the error value at the other position is −1. We can use this to decode the received
word to its nearest neighbor, i.e., (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

3


