Introduction to Coding Theory - Spring 2011 Solutions 6

Solutions 6

Exercise 6.1.

1. We first observe that m(z) = " *u(x) — b(x) is divisible by g(x) so m belongs to C.
We see also that 2" *u(z) amounts to shift the bits of u to the rightmost positions in m,
besides b(x) has degree < deg g = n — k. So the bits of b are zeros on the last k positions
and do not interfer with 2" *u(z).

2. Let us denote 3)(z) the content of the registers at step j. At step 1, the registers con-
tain 3 (x) = ug_19(2). Now to go to from a step j — 1 to the step 7, every bit is shifted
to the right, which amounts to multiply 3(x) by z, and the last bit, corresponding to
Br_r_12" k=1 give rise to an additional B, _1(go + - + gn_r_12"*71). In other
words, the feedback loops amounts to reduce mod 2" F —(go 4+ gn_p_12™Fh).
On the other hand, we input uz_;(go + - - -+ gn,k,lx”_k_l) at step j, so the register be-
comes 3V (z) = x8Y =Y (x) +ug_;j2"* mod g(z). So by induction, 3 (z) = 2" Fu(x)
mod g(z) = b(x) as claimed.

3. Let v = (vg,...,vn—1) be a codeword. We know that the check equations of the code
can be written in terms of the coefficients of h as Zf:o hivn—i—j = 0 (see last exercise
sheet). Thus, since hy =1,

k-1
Vi<j<n-—k, vppj= Z hivp—i—;
=0

which is exactly what the circuit computes.

4. Using g(x) = 2® + x + 1 requires 3 registers and 2 xors. Using h(z) = 1 + z + 2% + 2*
requires 4 registers and 2 xors. Notice on Fy, multiplication by 0 mean that there is no
connection, while multiplication by 1 mean that there is a connection.

5. We use a circuit that is analogous to the first one. This time, the entry is on the left.

K—— @
Kk—— @
Kk—— @

g1
Y& @ AD % B Ok

Exercise 6.2.

1. We must have w'® = 1 and w" # 1 for every r < 13. In particular, w must be a root of
z13 — 1 that lives in the smallest splitting field of this polynomial. Let ¢ := 3,n := 13
and consider the smallest integer m such that n divides ¢™ — 1. For our choices, we
will have m = 3. The degree of the smallest splitting field of 2 — 1 must be m (i.e., 3),
as we need 2" — 1 divide 29" ~! — 1 but not z¢°~! — 1 for any s < m.

Introduction to Coding Theory - Spring 2011 Solutions 6

2. First we note that for every a, the minimal polynomial of « and o? are the same over
[F3. So the minimal polynomial of the elements on each of the following lines are the
same:

So we only need to list go, g1, g2, 94, g7. Each one of these is the minimial polynomial of
the powers of w indicated below:

go : 0

gr: 1,3,9
g2: 2,5,6
gs: 4,10,12
gr: 7,811

In particular the degrees of go, g1, 92, 94, g7 are 1,3, 3, 3, 3, respectively. As the dimen-
sion of the code needs to be 6, the generator polynomial of the code must pick two
minimal polynomials of degree 3 and the one with degree 1. Moreover, as the distance
of the code needs to be 2 * 2 + 1 = 5, we can in particular pick go, g1, g2 so as to have
w? wh w? w? as roots of the generator polynomial, and thus, achieve a distance of 5

by the BCH bound. Thus, letting g(z) denote the generator polynomial, we will have
9(x) = go(x)g1(x)ga ().

3. Let E(z) := 2% + agz? + a1z + ag. If E(z) is reducible then it must have a factor of
degree 1, i.e., either z, z — 1, or x + 1. We want to eliminate these possibilities. We
can ensure that z is not a factor by letting ap # 0. If x — 1 is a factor of E(x), then
we must have E(1) = 0, i.e,, 1 + ap + a1 + ap = 0. Similarly, if = + 1 is a factor of
E(z), we must have ag + a2 = 1 4 a;. We can ensure these conditions hold by letting
ao :=1,a; := —1,ay := 0, and obtain F(x) = 23 — = + 1, which is irreducible over Fs.

4. The element « is a primitive element of [F533, and thus it is a primitive 26th root of unity.
As w must be a primitive 13th root of unity, we can take w := a2. Now we take « as a
root of the polynomial E(x) above. The table below shows various powers of «, and
confirms that a has order 26:

Introduction to Coding Theory - Spring 2011 Solutions 6

|

L i [e
0 1
1 «Q
2 a?
3 a—1
4 a? —
) —a’4a-1
6 a?+a+1
7 a?—a—1
8 —a’ -1
9 a+1
10 a’+a
11 a’?+a—1
12 a? -1
13 -1
1343 —aJ

Thus, we can write the minimal polynomials as follows:

go=@—-a"=2-1
g=@—-a})(z—-a)(z—-a®) =23 +22+2-1
g =@—at)z—-a?)(z—-al®)=234+22 -1
g=@—-a®z—-a®)(z—-a®)=2% 22—z -1

g7 = (x — a14)(a: — alG)(x — a22) =3 —xr—1

5. Using the previous parts, we can conclude that the code is generated by

2 g1,

g9(z) = go(z)g1(x)ge(x) = (m—1)(:E3+:E2+a:—1)(:v3+332—1) =24+ -+
6. Lety = (yo,...,y12) and y(z) :== >, y;z" so we have y(z) = —z + 2°, and consider the
error-locating polynomial e(x) = a1z + asx™ where i; and iy are the error positions and
a; and ay are error values. Let X := w' and Y := w?2, so we want to know X and Y.
We have that y(x) = e(z) for z = w',i = 0,1,2,3,5,6,9. So
Sy 1= y(wo) =a1+ay=0= a1 = —as.
Sii=a1(X -Y)=yw)=a'®—a?=a.
Sy =a(X?—Y) =yw?)=w®—w?=-a"—at=a’—a+1= -0’

Thus X +Y = S95/51 = —a’. We may without loss of generality assume that X —Y = «
(if a1 = —1, this will only changed the order of X and Y'). So,

X=(X+)+(X-Y))/2=0a’+a=0a'"=0u5
Y=(X4+Y)-(X-Y))/2=-a'-a" =0 =0,

so we conclude that the errors are at positions 1 and 5. Now from S} = a1(X -Y) = a,
we obtain that a; = 1, so the error value at the position corresponding to X (i.e., 5) is 1
and the error value at the other position is —1. We can use this to decode the received
word to its nearest neighbor, i.e., (0,0,0,0,0,0,0,0,0,0,0,0,0).

