Solutions 6

Exercise 6.1.

- 1. We first observe that $m(x) = x^{n-k}u(x) b(x)$ is divisible by $g(x)$ so m belongs to C. We see also that $x^{n-k}u(x)$ amounts to shift the bits of u to the rightmost positions in m , besides $b(x)$ has degree \lt deg $g = n - k$. So the bits of b are zeros on the last k positions and do not interfer with $x^{n-k}u(x)$.
- 2. Let us denote $\beta^{(j)}(x)$ the content of the registers at step j. At step 1, the registers contain $\beta^{(1)}(x)=u_{k-1}g(x).$ Now to go to from a step $j-1$ to the step j , every bit is shifted to the right, which amounts to multiply $\beta(x)$ by x, and the last bit, corresponding to $\beta_{n-k-1}x^{n-k-1}$ give rise to an additional $\beta_{n-k-1}(g_0 + \cdots + g_{n-k-1}x^{n-k-1})$. In other words, the feedback loops amounts to reduce mod $x^{n-k} - (g_0 + \cdots + g_{n-k-1}x^{n-k-1}).$ On the other hand, we input $u_{k-j}(g_0 + \cdots + g_{n-k-1}x^{n-k-1})$ at step j , so the register becomes $\beta^{(j)}(x) = x\beta^{(j-1)}(x) + u_{k-j}x^{n-k} \mod g(x)$. So by induction, $\beta^{(k)}(x) = x^{n-k}u(x)$ mod $q(x) = b(x)$ as claimed.
- 3. Let $v = (v_0, \ldots, v_{n-1})$ be a codeword. We know that the check equations of the code can be written in terms of the coefficients of h as $\sum_{i=0}^k h_i v_{n-i-j} = 0$ (see last exercise sheet). Thus, since $h_k = 1$,

$$
\forall 1 \le j \le n - k, \quad v_{n-k-j} = \sum_{i=0}^{k-1} h_i v_{n-i-j}
$$

which is exactly what the circuit computes.

- 4. Using $g(x) = x^3 + x + 1$ requires 3 registers and 2 xors. Using $h(x) = 1 + x + x^2 + x^4$ requires 4 registers and 2 xors. Notice on \mathbb{F}_2 , multiplication by 0 mean that there is no connection, while multiplication by 1 mean that there is a connection.
- 5. We use a circuit that is analogous to the first one. This time, the entry is on the left.

Exercise 6.2.

1. We must have $\omega^{13} = 1$ and $\omega^r \neq 1$ for every $r < 13$. In particular, ω must be a root of $x^{13} - 1$ that lives in the smallest splitting field of this polynomial. Let $q := 3, n := 13$ and consider the smallest integer m such that n divides $q^m - 1$. For our choices, we will have $m = 3$. The degree of the smallest splitting field of $xⁿ - 1$ must be m (i.e., 3), as we need $x^n - 1$ divide $x^{q^m-1} - 1$ but not $x^{q^s-1} - 1$ for any $s < m$.

$$
\omega^{0} = 1
$$

\n
$$
\omega, \omega^{3}, \omega^{9}, \omega^{27} = \omega
$$

\n
$$
\omega^{2}, \omega^{6}, \omega^{18} = \omega^{5}, \omega^{15} = \omega^{2}
$$

\n
$$
\omega^{4}, \omega^{12}, \omega^{36} = \omega^{10}, \omega^{30} = \omega^{4}
$$

\n
$$
\omega^{7}, \omega^{21} = \omega^{8}, \omega^{24} = \omega^{11}, \omega^{33} = \omega^{7}
$$

So we only need to list g_0, g_1, g_2, g_4, g_7 . Each one of these is the minimial polynomial of the powers of ω indicated below:

$$
g_0: 0\n g_1: 1,3,9\n g_2: 2,5,6\n g_4: 4,10,12\n g_7: 7,8,11
$$

In particular the degrees of g_0 , g_1 , g_2 , g_4 , g_7 are 1, 3, 3, 3, 3, respectively. As the dimension of the code needs to be 6, the generator polynomial of the code must pick two minimal polynomials of degree 3 and the one with degree 1. Moreover, as the distance of the code needs to be $2 * 2 + 1 = 5$, we can in particular pick g_0, g_1, g_2 so as to have $\omega^0, \omega^1, \omega^2, \omega^3$ as roots of the generator polynomial, and thus, achieve a distance of 5 by the BCH bound. Thus, letting $g(x)$ denote the generator polynomial, we will have $g(x) = g_0(x)g_1(x)g_2(x).$

- 3. Let $E(x) := x^3 + a_2x^2 + a_1x + a_0$. If $E(x)$ is reducible then it must have a factor of degree 1, i.e., either x , $x - 1$, or $x + 1$. We want to eliminate these possibilities. We can ensure that x is not a factor by letting $a_0 \neq 0$. If $x - 1$ is a factor of $E(x)$, then we must have $E(1) = 0$, i.e., $1 + a_0 + a_1 + a_2 = 0$. Similarly, if $x + 1$ is a factor of $E(x)$, we must have $a_0 + a_2 = 1 + a_1$. We can ensure these conditions hold by letting $a_0 := 1, a_1 := -1, a_2 := 0$, and obtain $E(x) = x^3 - x + 1$, which is irreducible over \mathbb{F}_3 .
- 4. The element α is a primitive element of \mathbb{F}_{3^3} , and thus it is a primitive 26th root of unity. As ω must be a primitive 13th root of unity, we can take $\omega := \alpha^2$. Now we take α as a root of the polynomial $E(x)$ above. The table below shows various powers of α , and confirms that α has order 26:

Thus, we can write the minimal polynomials as follows:

$$
g_0 = (x - \alpha^0) = x - 1
$$

\n
$$
g_1 = (x - \alpha^2)(x - \alpha^6)(x - \alpha^{18}) = x^3 + x^2 + x - 1
$$

\n
$$
g_2 = (x - \alpha^4)(x - \alpha^{12})(x - \alpha^{10}) = x^3 + x^2 - 1
$$

\n
$$
g_4 = (x - \alpha^8)(x - \alpha^{24})(x - \alpha^{20}) = x^3 - x^2 - x - 1
$$

\n
$$
g_7 = (x - \alpha^{14})(x - \alpha^{16})(x - \alpha^{22}) = x^3 - x - 1
$$

5. Using the previous parts, we can conclude that the code is generated by

$$
g(x) = g_0(x)g_1(x)g_2(x) = (x-1)(x^3 + x^2 + x - 1)(x^3 + x^2 - 1) = x^7 + x^6 - x^3 + x^2 - x - 1.
$$

6. Let $y = (y_0, \ldots, y_{12})$ and $y(x) := \sum_i y_i x^i$ so we have $y(x) = -x + x^5$, and consider the *error-locating polynomial* $e(x) = a_1 x^{i_1} + a_2 x^{i_2}$ *where* i_1 *and* i_2 *are the error positions and* a_1 and a_2 are error values. Let $X := \omega^{i_1}$ and $Y := \omega^{i_2}$, so we want to know X and Y. We have that $y(x) = e(x)$ for $x = \omega^i, i = 0, 1, 2, 3, 5, 6, 9$. So

$$
S_0 := y(\omega^0) = a_1 + a_2 = 0 \Rightarrow a_1 = -a_2.
$$

\n
$$
S_1 := a_1(X - Y) = y(\omega) = \alpha^{10} - \alpha^2 = \alpha.
$$

\n
$$
S_2 := a_1(X^2 - Y^2) = y(\omega^2) = \omega^{10} - \omega^2 = -\alpha^7 - \alpha^4 = \alpha^2 - \alpha + 1 = -\alpha^5.
$$

Thus $X+Y = S_2/S_1 = -\alpha^4$. We may without loss of generality assume that $X-Y = \alpha$ (if $a_1 = -1$, this will only changed the order of X and Y). So,

$$
X = ((X + Y) + (X - Y))/2 = \alpha^{2} + \alpha = \alpha^{10} = \omega^{5},
$$

\n
$$
Y = ((X + Y) - (X - Y))/2 = -\alpha^{4} - \alpha^{10} = \alpha^{2} = \omega,
$$

so we conclude that the errors are at positions 1 and 5. Now from $S_1 = a_1(X - Y) = \alpha$, we obtain that $a_1 = 1$, so the error value at the position corresponding to X (i.e., 5) is 1 and the error value at the other position is −1. We can use this to decode the received word to its nearest neighbor, i.e., (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).