
Introduction to Coding Theory - Spring 2011 Solutions 7

Solutions 7

Exercise 7.1. Let α be a primitive nth root of unity (that lives in F2m). Such a code is defined
all polynomials m(x) ∈ F2[x] such that degm(x) < n and g(α) = 0. Now if we write F2m as a
F2-vector space of dimension m, the powers of α written as elements of Fm

2 take all possible
values except 0. So a check matrix of the code is exactly the check matrix of a Hamming
code.

Exercise 7.2.

1. Here is the table
i βi i βi

1 1 + ω 5 −1− ω
2 −ω 6 ω
3 1− ω 7 −1 + ω
4 −1 8 1

2. The conjugate root of β is β3. The conjugate root of β2 is β6. So we get g(z) = (z −
1)(z − β)(z − β2)(z − β3)(z − β6) = z5 − z3 + z2 + z + 1. The code is [8, 3, 5]3-code.

3. We can correct up to 2 errors. Suppose y(z) = c(z) + e(z) with e(z) = azr + bzs, where
a, b ∈ F3 and r, s ≤ 7. Set X = βr and Y = βs. We have

S0 = y(β0) = e(β0) = 0 = a+ b

S1 = y(β1) = 1− ω = aX + bY

S2 = y(β2) = 1 = aX2 + bY 2

So a = −b, S2/S1 = X + Y = 1
1−ω = −1− ω.

We can assume without loss of generality that a = 1 (if a = −1, this will exchange X
and Y ). So X − Y = 1− ω. So X = −ω = β2 and Y = −1 = β4. So e(z) = z2 − z4. The
sent message was thus z7 + z4 − z2 + z + 1 = g(x)(z2 + 1)

Exercise 7.3.

1. Let ω denote a primitive 31st root of unity in F32. First, we write a complete list of
minimal polynomials for various powers of ω. Denote the minimal polynomial of ωi by
gi. Then gi is also the minimal polynomial of ω2i, ω4i, . . . (e.g., g1 = g2 = g4 = g8 = g16).
According to this, the powers of ω for which each gi is the minimal polynomial are
listed below:

g0 : 0
g1 : 1, 2, 4, 8, 16
g3 : 3, 6, 12, 24, 17
g5 : 5, 10, 20, 9, 18
g7 : 7, 14, 28, 25, 19
g11 : 11, 22, 13, 26, 21
g15 : 15, 30, 29, 27, 23

1



Introduction to Coding Theory - Spring 2011 Solutions 7

Thus the degree of g0 is 1 and the rest of the gi’s have degree 5. Now in order to design
the code, we need to take three degree 5 polynomials that are factors of the generating
polynomial g(x) for the code (because the dimension of the code must be 16, we need
the degree of the generating polynomial to be 31−16 = 15), and wee need the generator
polynomial to contain 6 consecutive powers of ω as its roots (as the distance of the code
must be at least 7). We see that a suitable choice is g(x) = g1(x)g3(x)g5(x), which has
ω1, . . . , ω6 as its roots.

2. Let H(z) = 1 − σ1z + σ2z
2 − σ3z

3 be the error-locator polynomial. Thus H ′(z) =
−σ1 + 2σ2z − 3σ3z

2. As we will be working with the coefficients of these polynomials
in characteristic two, we can simplify the polynomials as H(z) = 1 +σ1z+σ2z

2 +σ3z
3

and H ′(z) = σ1 + σ3z
2. Let S(z) := S1 + S2z + S3z

2 + · · · be a power series defined by
the Si. According to the Newton relations, we must have

H(z) · S(z) = −H ′(z),

thus,
(1 + σ1z + σ2z

2 + σ3z
3) · (S1 + S2z + S3z

2 + · · · ) = σ1 + σ3z
2.

We already know that σ1 = S1. Now comparing the coefficients of various powers of z
on both sides (namely, z2 and z3), we obtain

S3 + σ1S2 + σ2S1 = σ3 ⇒ S3 + S1S2 + σ2S1 = σ3, (1)

and,
S4 + σ1S3 + σ2S2 + σ3S1 = 0⇒ S4 + S1S3 + σ3S1 = σ2S2. (2)

Substituting (1) in (2) gives

σ2S2 = S4 + S1S3 + S3S1 + S3
1S2 + σ2S

2
1 ,

thus,
σ2 = (S4 + S2

1S2)/(S2 + S2
1).

Using this in (1) finally gives

σ3 = S3 + S1S2 + S1(S4 + S2
1S2)/(S2 + S2

1).

3. As seen in the lecture, a simple decoding algorithm will first compute the syndromes
S1, . . . , S6 from the received word y as Si := y(ωi), and then uses the identities obtained
in the previous parts to compute σ1, σ2, σ3, and thus, the error locator polynomialH(z)
(if all the Si are zero, no error has occurred and decoding stops right away). The roots
of H(z) include the powers of ω at which the errors have occurred. By erasing y at the
obtained positions, we can apply an erasure decoding algorithm (which amounts to
solving a system of linear equations) to find the exact set of errors.

2


